Can Yekta Said, Kabadayı M Erdem
College of Social Sciences and Humanities, Koc University, Rumelifeneri Yolu, 34450 Sarıyer, Istanbul, Turkey.
J Imaging. 2020 May 14;6(5):32. doi: 10.3390/jimaging6050032.
Historical document analysis systems gain importance with the increasing efforts in the digitalization of archives. Page segmentation and layout analysis are crucial steps for such systems. Errors in these steps will affect the outcome of handwritten text recognition and Optical Character Recognition (OCR) methods, which increase the importance of the page segmentation and layout analysis. Degradation of documents, digitization errors, and varying layout styles are the issues that complicate the segmentation of historical documents. The properties of Arabic scripts such as connected letters, ligatures, diacritics, and different writing styles make it even more challenging to process Arabic script historical documents. In this study, we developed an automatic system for counting registered individuals and assigning them to populated places by using a CNN-based architecture. To evaluate the performance of our system, we created a labeled dataset of registers obtained from the first wave of population registers of the Ottoman Empire held between the 1840s and 1860s. We achieved promising results for classifying different types of objects and counting the individuals and assigning them to populated places.
随着档案数字化工作的不断推进,历史文献分析系统变得愈发重要。页面分割和布局分析是此类系统的关键步骤。这些步骤中的错误会影响手写文本识别和光学字符识别(OCR)方法的结果,这就增加了页面分割和布局分析的重要性。文档退化、数字化错误以及多样的布局样式是使历史文献分割变得复杂的问题。阿拉伯文字的特性,如连写字母、连字、变音符和不同的书写风格,使得处理阿拉伯文历史文献更具挑战性。在本研究中,我们开发了一个基于卷积神经网络(CNN)架构的自动系统,用于统计登记在册的人员数量并将他们分配到有人居住的地方。为了评估我们系统的性能,我们创建了一个标注数据集,该数据集来自19世纪40年代至60年代奥斯曼帝国第一波人口登记册。我们在对不同类型的对象进行分类、统计人员数量并将他们分配到有人居住的地方方面取得了可观的成果。