Suppr超能文献

研究屈肌腱缩短对指肌腱修复后主动活动范围的影响。

Investigating the effects of flexor tendon shortening on active range of motion after finger tendon repair.

机构信息

Mechanical Engineering, University of Utah, Salt Lake City, Utah, USA.

Surgery, University of Utah, Salt Lake City, Utah, USA.

出版信息

Anat Rec (Hoboken). 2022 May;305(5):1231-1244. doi: 10.1002/ar.24763. Epub 2021 Sep 18.

Abstract

Evaluation of surgical effects is often done using simple cadaver experimentation. This study uses a robotic testbed to estimate the best-case clinical outcomes of flexor tendon shortening during repair surgery on cadaver hands. Nine fresh-frozen cadaver subjects were connected to an extrinsic index finger robotic muscle testbed and measurement system. The flexor digitorum profundus tendons were severed and surgically repaired at different shortening levels. The index finger's extrinsic tendons were robotically actuated using Hill-type muscle models to emulate the muscle force-length relationships. Extensor muscles were then activated to estimate the active range of motion (ROM) of the all-finger joints after surgery. The effects of metacarpophalangeal (MCP) joint extension limits and extensor muscle activation were also investigated. The resulting interphalangeal joint ROM was clinically graded. Active ROM of the finger decreases as tendon shortening increases ( ), like passive ROM. This results in a clinical reduction of functionality grade from excellent to good at 10 mm of shortening. Blocking MCP joint ROM and extensor activation also showed significant effects on recovered ROM ( and 0.86). Significant two-way interactions were also observed between shortening and MCP joint blocking ( ) and between shortening and extensor activation ( ). Results support clinical recommendations of limiting shortening to 10 mm. While this article provides additional experimental evidence for current surgical recommendations, it also validates a new robotic-cadaver methodology for predicting active hand recovery in terms of clinical measurements.

摘要

手术效果的评估通常通过简单的尸体实验来进行。本研究使用机器人测试平台来估计在尸体手上进行修复手术时屈肌腱缩短的最佳临床结果。九个新鲜冷冻的尸体标本被连接到一个外在的食指机器人肌肉测试平台和测量系统上。切断并在不同的缩短水平上修复屈肌腱。使用 Hill 型肌肉模型来模拟肌肉力-长度关系,通过机器人驱动食指的外在肌腱。然后激活伸肌以估计手术后所有手指关节的主动活动范围(ROM)。还研究了掌指(MCP)关节伸展极限和伸肌激活的影响。由此产生的指间关节 ROM 进行临床分级。随着肌腱缩短的增加,手指的主动 ROM 减少( ),就像被动 ROM 一样。这导致在缩短 10mm 时,功能等级从优秀降至良好。阻断 MCP 关节 ROM 和伸肌激活也显示出对恢复 ROM 的显著影响( 和 0.86)。还观察到缩短和 MCP 关节阻断之间( )以及缩短和伸肌激活之间( )的显著双向相互作用。结果支持将缩短限制在 10mm 的临床建议。虽然本文为当前手术建议提供了额外的实验证据,但它还验证了一种新的机器人-尸体方法,用于根据临床测量预测主动手部恢复。

相似文献

1
Investigating the effects of flexor tendon shortening on active range of motion after finger tendon repair.
Anat Rec (Hoboken). 2022 May;305(5):1231-1244. doi: 10.1002/ar.24763. Epub 2021 Sep 18.
2
Flexor digitorum profundus tendon tension during finger manipulation.
J Hand Ther. 2005 Jul-Sep;18(3):330-8; quiz 338. doi: 10.1197/j.jht.2005.04.001.
3
The moment arms and leverage of the human finger muscles.
J Biomech. 2021 Feb 12;116:110180. doi: 10.1016/j.jbiomech.2020.110180. Epub 2020 Dec 31.
4
Calculation of flexor pollicis longus moment arm for wrist motion in a cadaver model validates the tenodesis effect for therapy.
J Hand Ther. 2020 Oct-Dec;33(4):470-476. doi: 10.1016/j.jht.2019.01.005. Epub 2019 Feb 18.
5
Use of Thermoplastic Rings Following Venting of Flexor Tendon Pulleys: A Biomechanical Analysis.
J Hand Surg Am. 2021 Jun;46(6):485-492. doi: 10.1016/j.jhsa.2020.11.003. Epub 2020 Dec 25.
6
[Biomechanical study of flexor tendon and finger motor function].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2009 Dec;26(6):1267-70.
7
Flexor tendon injuries in pediatric patients.
J Hand Surg Am. 2007 Dec;32(10):1549-57. doi: 10.1016/j.jhsa.2007.08.006.
8
Relative Motion Flexion Splinting for Flexor Tendon Lacerations: Proof of Concept.
Hand (N Y). 2019 Mar;14(2):193-196. doi: 10.1177/1558944717732063. Epub 2017 Oct 4.
9
Tendon and nerve displacement at the wrist during finger movements.
Clin Biomech (Bristol). 2005 Jan;20(1):50-6. doi: 10.1016/j.clinbiomech.2004.08.006.

本文引用的文献

1
Modulation of finger muscle activation patterns across postures is coordinated across all muscle groups.
J Neurophysiol. 2020 Aug 1;124(2):330-341. doi: 10.1152/jn.00088.2020. Epub 2020 Jun 24.
2
Simultaneous Kinematic and Contact Force Modeling of a Human Finger Tendon System Using Bond Graphs and Robotic Validation.
J Dyn Syst Meas Control. 2020 Mar 1;142(3):0310071-3100714. doi: 10.1115/1.4045494. Epub 2019 Dec 23.
4
Functional range of motion of the hand joints in activities of the International Classification of Functioning, Disability and Health.
J Hand Ther. 2017 Jul-Sep;30(3):337-347. doi: 10.1016/j.jht.2016.08.001. Epub 2017 Feb 20.
5
Myosin filament sliding through the Z-disc relates striated muscle fibre structure to function.
Proc Biol Sci. 2016 Mar 16;283(1826):20153030. doi: 10.1098/rspb.2015.3030.
6
The effect of flexor digitorum profundus tendon shortening on jersey finger surgical repair: a cadaveric biomechanical study.
J Hand Surg Eur Vol. 2015 Sep;40(7):729-34. doi: 10.1177/1753193415585311. Epub 2015 May 12.
7
Benchmarking of dynamic simulation predictions in two software platforms using an upper limb musculoskeletal model.
Comput Methods Biomech Biomed Engin. 2015;18(13):1445-58. doi: 10.1080/10255842.2014.916698. Epub 2014 Jul 4.
8
The incidence of acute traumatic tendon injuries in the hand and wrist: a 10-year population-based study.
Clin Orthop Surg. 2014 Jun;6(2):196-202. doi: 10.4055/cios.2014.6.2.196. Epub 2014 May 16.
9
Flexion and extension angles of resting fingers and wrist.
Int J Occup Saf Ergon. 2014;20(1):91-101. doi: 10.1080/10803548.2014.11077038.
10
Biomechanical comparison of reverse total shoulder arthroplasty systems in soft tissue-constrained shoulders.
J Shoulder Elbow Surg. 2014 May;23(5):e108-17. doi: 10.1016/j.jse.2013.08.008. Epub 2013 Nov 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验