Suppr超能文献

SARS-CoV-2 基因组中方向序列变化的时间序列分析及有利于在人细胞中生长的有利突变候选物的高效搜索方法。

Time-series analyses of directional sequence changes in SARS-CoV-2 genomes and an efficient search method for candidates for advantageous mutations for growth in human cells.

机构信息

Department of Bioscience, Nagahama Institute of Bio-Science and Technology, Tamura-cho 1266, Nagahama-shi, Shiga-ken 526-0829, Japan.

Department of Bioscience, Nagahama Institute of Bio-Science and Technology, Tamura-cho 1266, Nagahama-shi, Shiga-ken 526-0829, Japan.

出版信息

Gene. 2020 Dec;763S:100038. doi: 10.1016/j.gene.2020.100038. Epub 2020 Aug 6.

Abstract

We first conducted time-series analysis of mono- and dinucleotide composition for over 10,000 SARS-CoV-2 genomes, as well as over 1500 Zaire ebolavirus genomes, and found clear time-series changes in the compositions on a monthly basis, which should reflect viral adaptations for efficient growth in human cells. We next developed a sequence alignment free method that extensively searches for advantageous mutations and rank them in an increase level for their intrapopulation frequency. Time-series analysis of occurrences of oligonucleotides of diverse lengths for SARS-CoV-2 genomes revealed seven distinctive mutations that rapidly expanded their intrapopulation frequency and are thought to be candidates of advantageous mutations for the efficient growth in human cells.

摘要

我们首先对超过 10000 个 SARS-CoV-2 基因组和超过 1500 个扎伊尔埃博拉病毒基因组的单核苷酸和二核苷酸组成进行了时间序列分析,发现每月组成都有明显的时间序列变化,这应该反映了病毒在人类细胞中高效生长的适应性。接下来,我们开发了一种无序列比对的方法,该方法广泛搜索有利突变,并按其在种群内的频率增加水平对它们进行排序。对 SARS-CoV-2 基因组的各种长度寡核苷酸出现的时间序列分析显示,有七个独特的突变迅速增加了它们在种群内的频率,被认为是在人类细胞中高效生长的有利突变候选者。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验