Department of Biomedical Informatics, Columbia University, New York, New York, United States.
Department of Medicine, Columbia University, New York, New York, United States.
Appl Clin Inform. 2021 Aug;12(4):816-825. doi: 10.1055/s-0041-1733846. Epub 2021 Sep 8.
Clinical trials are the gold standard for generating robust medical evidence, but clinical trial results often raise generalizability concerns, which can be attributed to the lack of population representativeness. The electronic health records (EHRs) data are useful for estimating the population representativeness of clinical trial study population.
This research aims to estimate the population representativeness of clinical trials systematically using EHR data during the early design stage.
We present an end-to-end analytical framework for transforming free-text clinical trial eligibility criteria into executable database queries conformant with the Observational Medical Outcomes Partnership Common Data Model and for systematically quantifying the population representativeness for each clinical trial.
We calculated the population representativeness of 782 novel coronavirus disease 2019 (COVID-19) trials and 3,827 type 2 diabetes mellitus (T2DM) trials in the United States respectively using this framework. With the use of overly restrictive eligibility criteria, 85.7% of the COVID-19 trials and 30.1% of T2DM trials had poor population representativeness.
This research demonstrates the potential of using the EHR data to assess the clinical trials population representativeness, providing data-driven metrics to inform the selection and optimization of eligibility criteria.
临床试验是产生可靠医学证据的金标准,但临床试验结果常常引起可推广性的担忧,这可归因于缺乏人群代表性。电子健康记录 (EHR) 数据可用于估计临床试验研究人群的代表性。
本研究旨在使用 EHR 数据在早期设计阶段系统地估计临床试验的人群代表性。
我们提出了一个端到端的分析框架,用于将临床试验资格标准的自由文本转换为符合观察性医学结局伙伴关系通用数据模型的可执行数据库查询,并系统地量化每个临床试验的人群代表性。
我们使用该框架分别计算了美国 782 项新型冠状病毒病 2019(COVID-19)试验和 3827 项 2 型糖尿病(T2DM)试验的人群代表性。使用过于严格的资格标准,85.7%的 COVID-19 试验和 30.1%的 T2DM 试验人群代表性较差。
本研究展示了使用 EHR 数据评估临床试验人群代表性的潜力,提供了数据驱动的指标,以告知资格标准的选择和优化。