Suppr超能文献

利用电子健康记录数据进行临床试验人群代表性系统评估的框架。

A Framework for Systematic Assessment of Clinical Trial Population Representativeness Using Electronic Health Records Data.

机构信息

Department of Biomedical Informatics, Columbia University, New York, New York, United States.

Department of Medicine, Columbia University, New York, New York, United States.

出版信息

Appl Clin Inform. 2021 Aug;12(4):816-825. doi: 10.1055/s-0041-1733846. Epub 2021 Sep 8.

Abstract

BACKGROUND

Clinical trials are the gold standard for generating robust medical evidence, but clinical trial results often raise generalizability concerns, which can be attributed to the lack of population representativeness. The electronic health records (EHRs) data are useful for estimating the population representativeness of clinical trial study population.

OBJECTIVES

This research aims to estimate the population representativeness of clinical trials systematically using EHR data during the early design stage.

METHODS

We present an end-to-end analytical framework for transforming free-text clinical trial eligibility criteria into executable database queries conformant with the Observational Medical Outcomes Partnership Common Data Model and for systematically quantifying the population representativeness for each clinical trial.

RESULTS

We calculated the population representativeness of 782 novel coronavirus disease 2019 (COVID-19) trials and 3,827 type 2 diabetes mellitus (T2DM) trials in the United States respectively using this framework. With the use of overly restrictive eligibility criteria, 85.7% of the COVID-19 trials and 30.1% of T2DM trials had poor population representativeness.

CONCLUSION

This research demonstrates the potential of using the EHR data to assess the clinical trials population representativeness, providing data-driven metrics to inform the selection and optimization of eligibility criteria.

摘要

背景

临床试验是产生可靠医学证据的金标准,但临床试验结果常常引起可推广性的担忧,这可归因于缺乏人群代表性。电子健康记录 (EHR) 数据可用于估计临床试验研究人群的代表性。

目的

本研究旨在使用 EHR 数据在早期设计阶段系统地估计临床试验的人群代表性。

方法

我们提出了一个端到端的分析框架,用于将临床试验资格标准的自由文本转换为符合观察性医学结局伙伴关系通用数据模型的可执行数据库查询,并系统地量化每个临床试验的人群代表性。

结果

我们使用该框架分别计算了美国 782 项新型冠状病毒病 2019(COVID-19)试验和 3827 项 2 型糖尿病(T2DM)试验的人群代表性。使用过于严格的资格标准,85.7%的 COVID-19 试验和 30.1%的 T2DM 试验人群代表性较差。

结论

本研究展示了使用 EHR 数据评估临床试验人群代表性的潜力,提供了数据驱动的指标,以告知资格标准的选择和优化。

相似文献

1
A Framework for Systematic Assessment of Clinical Trial Population Representativeness Using Electronic Health Records Data.
Appl Clin Inform. 2021 Aug;12(4):816-825. doi: 10.1055/s-0041-1733846. Epub 2021 Sep 8.
3
Multivariate analysis of the population representativeness of related clinical studies.
J Biomed Inform. 2016 Apr;60:66-76. doi: 10.1016/j.jbi.2016.01.007. Epub 2016 Jan 25.
4
Towards clinical data-driven eligibility criteria optimization for interventional COVID-19 clinical trials.
J Am Med Inform Assoc. 2021 Jan 15;28(1):14-22. doi: 10.1093/jamia/ocaa276.
6
The representativeness of eligible patients in type 2 diabetes trials: a case study using GIST 2.0.
J Am Med Inform Assoc. 2018 Mar 1;25(3):239-247. doi: 10.1093/jamia/ocx091.
8
A knowledge base of clinical trial eligibility criteria.
J Biomed Inform. 2021 May;117:103771. doi: 10.1016/j.jbi.2021.103771. Epub 2021 Apr 1.
9
Correlating eligibility criteria generalizability and adverse events using Big Data for patients and clinical trials.
Ann N Y Acad Sci. 2017 Jan;1387(1):34-43. doi: 10.1111/nyas.13195. Epub 2016 Sep 6.

引用本文的文献

1
Clinical researchers' insights on key data for eligibility screening in clinical studies.
J Clin Transl Sci. 2024 Oct 16;8(1):e167. doi: 10.1017/cts.2024.617. eCollection 2024.
3
Utilization of EHRs for clinical trials: a systematic review.
BMC Med Res Methodol. 2024 Mar 18;24(1):70. doi: 10.1186/s12874-024-02177-7.
4
Searching of Clinical Trials Made Easier in cBioPortal Using Patients' Genetic and Clinical Profiles.
Appl Clin Inform. 2022 Mar;13(2):363-369. doi: 10.1055/s-0042-1743560. Epub 2022 Mar 30.

本文引用的文献

2
Building an OMOP common data model-compliant annotated corpus for COVID-19 clinical trials.
J Biomed Inform. 2021 Jun;118:103790. doi: 10.1016/j.jbi.2021.103790. Epub 2021 Apr 28.
3
Shared-Task Worklists Improve Clinical Trial Recruitment Workflow in an Academic Emergency Department.
Appl Clin Inform. 2021 Mar;12(2):293-300. doi: 10.1055/s-0041-1727153. Epub 2021 Apr 7.
4
Towards clinical data-driven eligibility criteria optimization for interventional COVID-19 clinical trials.
J Am Med Inform Assoc. 2021 Jan 15;28(1):14-22. doi: 10.1093/jamia/ocaa276.
5
The COVID-19 Trial Finder.
J Am Med Inform Assoc. 2021 Mar 1;28(3):616-621. doi: 10.1093/jamia/ocaa304.
6
Chia, a large annotated corpus of clinical trial eligibility criteria.
Sci Data. 2020 Aug 27;7(1):281. doi: 10.1038/s41597-020-00620-0.
7
Criteria2Query: a natural language interface to clinical databases for cohort definition.
J Am Med Inform Assoc. 2019 Apr 1;26(4):294-305. doi: 10.1093/jamia/ocy178.
8
A data-zone scoring system to assess the generalizability of clinical trial results to individual patients.
Eur J Prev Cardiol. 2019 Apr;26(6):569-575. doi: 10.1177/2047487318815967. Epub 2018 Nov 26.
10
Factors associated with clinical trials that fail and opportunities for improving the likelihood of success: A review.
Contemp Clin Trials Commun. 2018 Aug 7;11:156-164. doi: 10.1016/j.conctc.2018.08.001. eCollection 2018 Sep.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验