Ostaszewska-Liżewska Anna, Nowicki Michał, Szewczyk Roman, Malinen Mika
Faculty of Mechatronics, Institute of Metrology and Biomedical Engineering, Warsaw University of Technology, sw. A. Boboli 8, 02-525 Warsaw, Poland.
Łukasiewicz Research Network-Industrial Research Institute for Automation and Measurements PIAP, 02-486 Warsaw, Poland.
Materials (Basel). 2021 Sep 1;14(17):4996. doi: 10.3390/ma14174996.
This paper presents a novel finite element method (FEM) of optimization for driving frequency in magneto-mechanical systems using contactless magnetoelastic torque sensors. The optimization technique is based on the generalization of the axial and shear stress dependence of the magnetic permeability tensor. This generalization creates a new possibility for the determination of the torque dependence of a permeability tensor based on measurements of the axial stress on the magnetization curve. Such a possibility of quantitative description of torque dependence of a magnetic permeability tensor has never before been presented. Results from the FEM-based modeling method were validated against a real magnetoelastic torque sensor. The sensitivity characteristics of the model and the real sensor show a maximum using a driving current of similar frequency. Consequently, the proposed method demonstrates the novel possibility of optimizing magnetoelastic sensors for automotive and industrial applications.
本文提出了一种使用非接触式磁弹性扭矩传感器对磁机械系统中的驱动频率进行优化的新型有限元方法(FEM)。该优化技术基于磁导率张量的轴向和剪应力依赖性的推广。这种推广为基于磁化曲线上轴向应力的测量来确定磁导率张量的扭矩依赖性创造了新的可能性。这种对磁导率张量扭矩依赖性进行定量描述的可能性此前从未有过。基于有限元法的建模方法的结果与实际磁弹性扭矩传感器进行了验证。模型和实际传感器的灵敏度特性在使用相似频率的驱动电流时显示出最大值。因此,所提出的方法展示了为汽车和工业应用优化磁弹性传感器的新可能性。