Department of Chemistry, Western Michigan University, Kalamazoo, Michigan 49008, USA.
Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA.
Org Biomol Chem. 2021 Sep 15;19(35):7641-7654. doi: 10.1039/d1ob01318a.
Selective binding and transport of highly hydrophilic anions is ubiquitous in nature, as anion binding proteins can differentiate between similar anions with over a million-fold efficiency. While comparable selectivity has occasionally been achieved for certain anions using small, artificial receptors, the selective binding of certain anions, such as sulfate in the presence of carbonate, remains a very challenging task. Nanojars of the formula [anion⊂{Cu(OH)(pz)}] (pz = pyrazolate; = 27-33) are totally selective for either CO or SO over anions such as NO, ClO, BF, Cl, Br and I, but cannot differentiate between the two. We hypothesized that rigidification of the nanojar outer shell by tethering pairs of pyrazole moieties together will restrict the possible orientations of the OH hydrogen-bond donor groups in the anion-binding cavity of nanojars, similarly to anion-binding proteins, and will lead to selectivity. Indeed, by using either homoleptic or heteroleptic nanojars of the general formula [anion⊂Cu(OH)(L2-L6)(pz)] ( = 26-31) based on a series of homologous ligands HpzCH(CH)CHpzH ( = 0-4; HL2-HL6), selectivity for carbonate (with L2 and with L4-L6/pz mixtures) or for sulfate (with L3) has been achieved. The synthesis of new ligands HL3, HL4 and HL5, X-ray crystal structures of HL4 and the tetrahydropyranyl-protected derivatives (THP)L4 and (THP)L5, synthesis and characterization by electrospray-ionization mass spectrometry (ESI-MS) of carbonate- and sulfate-nanojars derived from ligands HL2-HL6, as well as detailed selectivity studies for CO SO using these novel nanojars are presented.
选择性结合和运输高度亲水的阴离子在自然界中普遍存在,因为阴离子结合蛋白可以区分具有超过百万倍效率的相似阴离子。虽然使用小型人工受体偶尔可以实现某些阴离子的类似选择性,但选择性结合某些阴离子,例如在存在碳酸盐的情况下硫酸盐,仍然是一项非常具有挑战性的任务。化学式为 [anion⊂{Cu(OH)(pz)}] 的纳米筒(pz = 吡唑; = 27-33)对 CO 或 SO 具有完全选择性,而对 NO、ClO、BF、Cl、Br 和 I 等阴离子则没有选择性,但不能区分两者。我们假设通过将一对吡唑部分键合在一起来刚性化纳米筒外壳,将限制 OH 氢键供体基团在纳米筒阴离子结合腔中的可能取向,类似于阴离子结合蛋白,并将导致选择性。事实上,通过使用基于一系列同源配体 HpzCH(CH)CHpzH( = 0-4;HL2-HL6)的通式为 [anion⊂Cu(OH)(L2-L6)(pz)] 的同系物纳米筒( = 26-31),已经实现了对碳酸盐(与 L2 和与 L4-L6/pz 混合物)或硫酸盐(与 L3)的选择性。新配体 HL3、HL4 和 HL5 的合成、HL4 的 X 射线晶体结构以及四氢吡喃基保护衍生物(THP)L4 和(THP)L5、由配体 HL2-HL6 衍生的碳酸盐和硫酸盐纳米筒的电喷雾电离质谱(ESI-MS)合成和表征,以及使用这些新型纳米筒对 CO 和 SO 的详细选择性研究都有报道。