Suppr超能文献

元分析逐片因果发现中的实验选择

Experiment Selection in Meta-Analytic Piecemeal Causal Discovery.

作者信息

Matiasz Nicholas J, Wood Justin, Wang Wei, Silva Alcino J, Hsu William

机构信息

Departments of Bioengineering, Neurobiology, and Radiological Sciences, University of California at Los Angeles (UCLA), Los Angeles, CA 90024, USA.

Departments of Computer Science, Neurobiology, and Bioengineering, University of California at Los Angeles (UCLA), Los Angeles, CA 90095, USA.

出版信息

IEEE Access. 2021;9:97929-97941. doi: 10.1109/access.2021.3093524. Epub 2021 Jul 1.

Abstract

Scientists try to design experiments that will yield maximal information. For instance, given the available evidence and a limitation on the number of variables that can be observed simultaneously, it may be more informative to intervene on variable and observe the response of variable than to intervene on and observe ; in other situations, the opposite may be true. Scientists must often make these decisions without primary data. To address this problem, in previous work, we created software for annotating aggregate statistics in the literature and deriving consistent causal explanations, expressed as causal graphs. This meta-analytic pipeline is useful not only for synthesizing evidence but also for planning experiments: one can use it strategically to select experiments that could further eliminate causal graphs from consideration. In this paper, we introduce interpretable policies for selecting experiments in the context of piecemeal causal discovery, a common setting in biological sciences in which each experiment can measure not an entire system but rather a strict subset of its variables. The limits of this piecemeal approach are only beginning to be fully characterized, with crucial theoretical work published recently. With simulations, we show that our experiment-selection policies identify causal structures more efficiently than random experiment selection. Unlike methods that require primary data, our meta-analytic approach offers a flexible alternative for those seeking to incorporate qualitative domain knowledge into their search for causal mechanisms. We also present a method that categorizes hypotheses with respect to their utility for identifying a system's causal structure. Although this categorization is usually infeasible to perform manually, it is critical for conducting research efficiently.

摘要

科学家们试图设计能产生最大信息量的实验。例如,鉴于现有证据以及可同时观测的变量数量有限,对变量 进行干预并观测变量 的反应可能比干预 并观测 更具信息量;在其他情况下,情况可能相反。科学家们常常在没有原始数据的情况下做出这些决策。为了解决这个问题,在之前的工作中,我们创建了用于注释文献中的汇总统计数据并得出一致的因果解释(以因果图表示)的软件。这种元分析流程不仅有助于综合证据,还能用于规划实验:人们可以策略性地使用它来选择能够进一步排除因果图的实验。在本文中,我们在逐块因果发现的背景下引入了用于选择实验的可解释策略,逐块因果发现是生物科学中的一种常见情况,其中每个实验测量的不是整个系统,而是其变量的一个严格子集。这种逐块方法的局限性才刚刚开始得到充分刻画,最近有重要的理论工作发表。通过模拟,我们表明我们的实验选择策略比随机选择实验能更有效地识别因果结构。与需要原始数据的方法不同,我们的元分析方法为那些寻求将定性领域知识纳入其因果机制探索的人提供了一种灵活的替代方案。我们还提出了一种根据假设对识别系统因果结构的效用进行分类的方法。虽然这种分类通常手动执行不可行,但对于高效开展研究至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c46b/8442252/b091a5958e6e/nihms-1724932-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验