Suppr超能文献

用于理解共溅射铝合金微观结构和力学性能的第一性原理计算

First-principles calculations for understanding microstructures and mechanical properties of co-sputtered Al alloys.

作者信息

Gong Mingyu, Wu Wenqian, Xie Dongyue, Richter Nicholas A, Li Qiang, Zhang Yifan, Xue Sichuang, Zhang Xinghang, Wang Jian

机构信息

Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA.

School of Materials Engineering, Purdue University, West Lafayette, IN 47907, USA.

出版信息

Nanoscale. 2021 Sep 17;13(35):14987-15001. doi: 10.1039/d1nr03333f.

Abstract

Recent experimental studies show that co-sputtering solutes with Al, together, can refine columnar grain size around few tens of nanometers and promote the formation and enhance the stability of planar defects such as stacking faults (SFs) and grain boundaries (GBs) in Al alloys. These crystal defects and fine columnar grains result in high strength, enhanced strain hardening and thermal stability of Al alloys. Using first-principles density-functional theory (DFT) calculations, we studied the role of eleven solutes in tailoring kinetics and energetics of adatoms and clusters on Al {111} surface, stable and unstable stacking fault energies, and kinetic energy barriers for the migration of defects. The calculations show that most solutes can effectively refine columnar grain size by decreasing the diffusivity of adatoms and surface clusters. These solutes do not necessarily decrease the stacking fault energy of Al alloys, but reduce the formation energy of faulted surface clusters and increase the energy barriers for the recovery of faulted surface clusters. Correspondingly, the formation of SFs is kinetically promoted during sputtering. Furthermore, solutes are segregated into the core of Shockley partial dislocations and play a pinning effect on SFs, SF arrays and twin boundaries, enhancing the thermal stability of these crystal defects. These findings provide insights into the design of high-strength Al alloys for high-temperature applications.

摘要

最近的实验研究表明,将溶质与铝共溅射能够细化至几十纳米左右的柱状晶粒尺寸,并促进铝合金中诸如堆垛层错(SFs)和晶界(GBs)等平面缺陷的形成并增强其稳定性。这些晶体缺陷和细小的柱状晶粒使得铝合金具有高强度、增强的应变硬化能力和热稳定性。利用第一性原理密度泛函理论(DFT)计算,我们研究了11种溶质在调整铝{111}表面上吸附原子和团簇的动力学和能量学、稳定和不稳定堆垛层错能以及缺陷迁移的动能势垒方面的作用。计算结果表明,大多数溶质能够通过降低吸附原子和表面团簇的扩散率来有效细化柱状晶粒尺寸。这些溶质不一定会降低铝合金的堆垛层错能,但会降低有缺陷表面团簇的形成能,并增加有缺陷表面团簇恢复的能垒。相应地,在溅射过程中,堆垛层错的形成在动力学上得到促进。此外,溶质会偏聚到肖克利不全位错的核心,并对堆垛层错、堆垛层错阵列和孪晶界起到钉扎作用,增强这些晶体缺陷的热稳定性。这些发现为高温应用的高强度铝合金设计提供了思路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验