Suppr超能文献

DHNLDA:一种基于深度层次网络的lncRNA-疾病关联预测新方法。

DHNLDA: A Novel Deep Hierarchical Network Based Method for Predicting lncRNA-Disease Associations.

作者信息

Xie Fansen, Yang Ziqi, Song Jinmiao, Dai Qiguo, Duan Xiaodong

出版信息

IEEE/ACM Trans Comput Biol Bioinform. 2022 Nov-Dec;19(6):3395-3403. doi: 10.1109/TCBB.2021.3113326. Epub 2022 Dec 8.

Abstract

Recent studies have found that lncRNA (long non-coding RNA) in ncRNA (non-coding RNA) is not only involved in many biological processes, but also abnormally expressed in many complex diseases. Identification of lncRNA-disease associations accurately is of great significance for understanding the function of lncRNA and disease mechanism. In this paper, a deep learning framework consisting of stacked autoencoder(SAE), multi-scale ResNet and stacked ensemble module, named DHNLDA, was constructed to predict lncRNA-disease associations, which integrates multiple biological data sources and constructing feature matrices. Among them, the biological data including the similarity and the interaction of lncRNAs, diseases and miRNAs are integrated. The feature matrices are obtained by node2vec embedding and feature extraction respectively. Then, the SAE and the multi-scale ResNet are used to learn the complementary information between nodes, and the high-level features of node attributes are obtained. Finally, the fusion of high-level feature is input into the stacked ensemble module to obtain the prediction results of lncRNA-disease associations. The experimental results of five-fold cross-validation show that the AUC of DHNLDA reaches 0.975 better than the existing methods. Case studies of stomach cancer, breast cancer and lung cancer have shown the great ability of DHNLDA to discover the potential lncRNA-disease associations.

摘要

最近的研究发现,非编码RNA(ncRNA)中的长链非编码RNA(lncRNA)不仅参与许多生物学过程,而且在许多复杂疾病中异常表达。准确识别lncRNA与疾病的关联对于理解lncRNA的功能和疾病机制具有重要意义。本文构建了一种由堆叠自编码器(SAE)、多尺度残差网络(ResNet)和堆叠集成模块组成的深度学习框架DHNLDA,用于预测lncRNA与疾病的关联,该框架整合了多个生物数据源并构建特征矩阵。其中,整合了包括lncRNA、疾病和miRNA的相似性及相互作用在内的生物数据。特征矩阵分别通过node2vec嵌入和特征提取获得。然后,利用SAE和多尺度ResNet学习节点之间的互补信息,得到节点属性的高级特征。最后,将高级特征融合输入到堆叠集成模块中,得到lncRNA与疾病关联的预测结果。五折交叉验证的实验结果表明,DHNLDA的AUC达到0.975,优于现有方法。对胃癌、乳腺癌和肺癌的案例研究表明,DHNLDA具有发现潜在lncRNA与疾病关联的强大能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验