Suppr超能文献

用于在可见光下将二氧化碳高效光还原为可调合成气的银修饰氮化镓。

Ag-decorated GaN for high-efficiency photoreduction of carbon dioxide into tunable syngas under visible light.

作者信息

Huang Wei, Zhou Dejin, Lee John, Sun Jiaqiang, Zhang Shusheng, Xu Hong, Luo Jun, Liu Xijun

机构信息

State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics & Systems, School of Microelectronics, Fudan University, Shanghai 200433, People's Republic of China.

Wuxi Research Institute of Applied Technologies, Tsinghua University, Wuxi 214072, People's Republic of China.

出版信息

Nanotechnology. 2021 Oct 14;32(50). doi: 10.1088/1361-6528/ac28d7.

Abstract

Visible light-driven photoreduction of COand HO to tunable syngas is an appealing strategy for both artificial carbon neutral and Fischer-Tropsch processes. However, the development of photocatalysts with high activity and selectivity remains challenging. For this case, we here design a hybrid catalyst, synthesized bydeposition of Ag crystals on GaN nanobelts, that delivers a tunable H/CO ratio between 0.5 and 3 under visible light irradiation ( > 400 nm). The obtained photocatalyst delivers a maximal turnover frequency value of 3.85 hand a corresponding yield rate of 2.12 mmol hgfor CO production, while the photocatalytic activity keeps stable during five cycling tests. Additionally, syngas can be detected even at > 600 nm. Experiments and mechanistic studies reveal that the existence of Ag crystals not only extends the light absorption region but also promotes the charge transfer efficiency, and thereby leading to a photocatalytic improvement. Accordingly, the present work affords an opportunity for developing an efficient photo-driven system by using solar energy to alleviate COemissions.

摘要

将二氧化碳和水可见光驱动光还原为可调合成气,对人工碳中和及费托合成过程而言都是一种有吸引力的策略。然而,开发具有高活性和选择性的光催化剂仍然具有挑战性。针对这种情况,我们在此设计了一种混合催化剂,通过在氮化镓纳米带上沉积银晶体合成,该催化剂在可见光照射(>400 nm)下可实现0.5至3的可调氢/一氧化碳比。所获得的光催化剂的最大周转频率值为3.85 h⁻¹,一氧化碳生成的相应产率为2.12 mmol h⁻¹g⁻¹,并且在五次循环测试中光催化活性保持稳定。此外,即使在>600 nm时也能检测到合成气。实验和机理研究表明,银晶体的存在不仅扩展了光吸收区域,还提高了电荷转移效率,从而导致光催化性能的提升。因此,本工作为利用太阳能开发高效光驱动系统以减轻二氧化碳排放提供了契机。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验