Stock Sebastian, Jakob Franziska, Röhl Susanne, Gräff Kevin, Kühnhammer Matthias, Hondow Nicole, Micklethwaite Stuart, Kraume Matthias, von Klitzing Regine
Institute for Condensed Matter Physics, Technische Universität Darmstadt, Darmstadt, Germany.
Chair of Chemical and Process Engineering, Technische Universität Berlin, Berlin, Germany.
Soft Matter. 2021 Sep 22;17(36):8258-8268. doi: 10.1039/d1sm00942g.
A general drawback of microgels is that they do not stabilize water-in-oil (w/o) emulsions of non-polar oils. Simultaneous stabilization with solid hydrophobic nanoparticles and soft hydrophilic microgels overcomes this problem. For a fundamental understanding of this synergistic effect the use of well defined particle systems is crucial. Therefore, the present study investigates the stabilization of water droplets in a highly non-polar oil phase using temperature responsive, soft and hydrophilic PNIPAM microgel particles (MGs) and solid and hydrophobic silica nanospheres (SNs) simultaneously. The SNs are about 20 times smaller than the MGs. In a multiscale approach the resulting emulsions are studied from the nanoscale particle properties over microscale droplet sizes to macroscopic observations. The synergy of the particles allows the stabilization of water-in-oil (w/o) emulsions, which was not possible with MGs alone, and offers a larger internal interface than the stabilization with SNs alone. Furthermore, the incorporation of hydrophilic MGs into a hydrophobic particle layer accelerates the emulsions sedimentation speed. Nevertheless, the droplets are still sufficiently protected against coalescence even in the sediment and can be redispersed by gentle shaking. Based on droplet size measurements and cryo-SEM studies we elaborate a model, which explains the found phenomena.
微凝胶的一个普遍缺点是它们不能稳定非极性油的油包水(w/o)乳液。用固体疏水纳米颗粒和软亲水微凝胶同时进行稳定化处理可克服这一问题。为了从根本上理解这种协同效应,使用定义明确的颗粒系统至关重要。因此,本研究同时使用温度响应性、软且亲水的聚N-异丙基丙烯酰胺微凝胶颗粒(MGs)和固体疏水二氧化硅纳米球(SNs),研究了在高度非极性油相中水滴的稳定化。SNs比MGs小约20倍。采用多尺度方法,从纳米级颗粒性质、微米级液滴尺寸到宏观观察,对所得乳液进行研究。颗粒的协同作用使得油包水(w/o)乳液得以稳定,而单独使用MGs时无法实现这一点,并且与单独使用SNs进行稳定化相比,提供了更大的内部界面。此外,将亲水MGs掺入疏水颗粒层会加快乳液的沉降速度。然而,即使在沉积物中,液滴仍能得到充分保护以防止聚并,并且可以通过轻轻摇晃重新分散。基于液滴尺寸测量和低温扫描电子显微镜研究,我们构建了一个模型来解释所发现的现象。