Pan Wenwen, Yin Yanling, Wang Xinchao, Jing Yongcheng, Song Mingli
IEEE Trans Pattern Anal Mach Intell. 2022 Nov;44(11):7871-7884. doi: 10.1109/TPAMI.2021.3114555. Epub 2022 Oct 4.
The goal of image steganography is to hide a full-sized image, termed secret, into another, termed cover. Prior image steganography algorithms can conceal only one secret within one cover. In this paper, we propose an adaptive local image steganography (AdaSteg) system that allows for scale- and location-adaptive image steganography. By adaptively hiding the secret on a local scale, the proposed system makes the steganography more secured, and further enables multi-secret steganography within one single cover. Specifically, this is achieved via two stages, namely the adaptive patch selection stage and secret encryption stage. Given a pair of secret and cover, first, the optimal local patch for concealment is determined adaptively by exploiting deep reinforcement learning with the proposed steganography quality function and policy network. The secret image is then converted into a patch of encrypted noises, resembling the process of generating adversarial examples, which are further encoded to a local region of the cover to realize a more secured steganography. Furthermore, we propose a novel criterion for the assessment of local steganography, and also collect a challenging dataset that is specialized for the task of image steganography, thus contributing to a standardized benchmark for the area. Experimental results demonstrate that the proposed model yields results superior to the state of the art in both security and capacity.
图像隐写术的目标是将一幅全尺寸图像(称为秘密图像)隐藏到另一幅图像(称为载体图像)中。先前的图像隐写术算法只能在一个载体图像中隐藏一个秘密。在本文中,我们提出了一种自适应局部图像隐写术(AdaSteg)系统,该系统允许进行尺度和位置自适应的图像隐写。通过在局部尺度上自适应地隐藏秘密,所提出的系统使隐写更加安全,并进一步实现了在单个载体图像中的多秘密隐写。具体而言,这通过两个阶段实现,即自适应补丁选择阶段和秘密加密阶段。对于一对秘密图像和载体图像,首先,通过利用深度强化学习以及所提出的隐写质量函数和策略网络,自适应地确定用于隐藏的最佳局部补丁。然后,秘密图像被转换为加密噪声补丁,类似于生成对抗样本的过程,这些加密噪声补丁被进一步编码到载体图像的局部区域以实现更安全的隐写。此外,我们提出了一种用于评估局部隐写术的新准则,并收集了一个专门用于图像隐写任务的具有挑战性的数据集,从而为该领域建立了一个标准化的基准。实验结果表明,所提出的模型在安全性和容量方面均产生了优于现有技术的结果。