Suppr超能文献

大鼠脑中多胺相互转化的发育方面

Developmental aspects of polyamine interconversion in rat brain.

作者信息

Bolkenius F N, Seiler N

机构信息

Merrell Dow Research Institute, Strasbourg Center, France.

出版信息

Int J Dev Neurosci. 1986;4(3):217-24. doi: 10.1016/0736-5748(86)90061-4.

Abstract

In the mammalian organism putrescine is formed by two reactions: (a) decarboxylation of ornithine and (b) degradation of spermidine via the so-called interconversion pathway. The latter comprises N1-acetylation of spermidine by a cytosolic acetyltransferase, and oxidative splitting of N1-acetylspermidine to putrescine by polyamine oxidase (PAO). It has previously been shown that specific inhibition of PAO causes a time-dependent accumulation of N1-acetylspermidine in brain, which is a measure of spermidine turnover. Another consequence of PAO inhibition is the decrease of brain putrescine concentration, proportional to its normal formation from spermidine. This observation allowed us to demonstrate the increasing significance of polyamine interconversion with brain maturation. The results support our hypothesis that the mechanisms which regulate cellular polyamine concentrations change during normal brain maturation from a system in which L-ornithine decarboxylase is dominating to a more sophisticated system in which both synthetic and catabolic processes become equally important regulatory factors. In contrast with current views, the activity of S-adenosylmethionine decarboxylase rather than that of ornithine decarboxylase limits the rate of polyamine biosynthesis during early brain development. In the mature brain the total amount of putrescine, which is formed both by decarboxylation of ornithine and by degradation of spermidine, limits the rate of spermidine formation. Changes of the regulatory system analogous to those described in this work are presumably not exclusive for brain, but rather characteristic for a variety of differentiating cells.

摘要

在哺乳动物机体中,腐胺通过两种反应形成:(a)鸟氨酸脱羧;(b)通过所谓的相互转化途径使亚精胺降解。后者包括由胞质乙酰转移酶将亚精胺进行N1 - 乙酰化,以及由多胺氧化酶(PAO)将N1 - 乙酰亚精胺氧化裂解为腐胺。先前已经表明,特异性抑制PAO会导致脑中N1 - 乙酰亚精胺随时间积累,这是亚精胺周转的一个指标。抑制PAO的另一个结果是脑腐胺浓度降低,这与其从亚精胺正常形成的比例相关。这一观察结果使我们能够证明多胺相互转化在脑成熟过程中的重要性日益增加。这些结果支持了我们的假设,即调节细胞多胺浓度的机制在正常脑成熟过程中发生变化,从一个以L - 鸟氨酸脱羧酶为主导的系统转变为一个更复杂的系统,在这个系统中合成和分解代谢过程都成为同等重要的调节因子。与当前观点相反,在脑发育早期,S - 腺苷甲硫氨酸脱羧酶的活性而非鸟氨酸脱羧酶的活性限制了多胺生物合成的速率。在成熟脑中,由鸟氨酸脱羧和亚精胺降解形成的腐胺总量限制了亚精胺的形成速率。类似于本研究中所描述的调节系统变化可能并非脑所特有,而是多种分化细胞的特征。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验