Suppr超能文献

中央执行网络在脑龄中的重要作用:来自机器学习和转录特征的证据

The Vital Role of Central Executive Network in Brain Age: Evidence From Machine Learning and Transcriptional Signatures.

作者信息

Fang Keke, Han Shaoqiang, Li Yuming, Ding Jing, Wu Jilian, Zhang Wenzhou

机构信息

Department of Pharmacy, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China.

Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.

出版信息

Front Neurosci. 2021 Sep 7;15:733316. doi: 10.3389/fnins.2021.733316. eCollection 2021.

Abstract

Recent studies combining neuroimaging with machine learning methods successfully infer an individual's brain age, and its discrepancy with the chronological age is used to identify age-related diseases. However, which brain networks play decisive roles in brain age prediction and the underlying biological basis of brain age remain unknown. To answer these questions, we estimated an individual's brain age in the Southwest University Adult Lifespan Dataset ( = 492) from the gray matter volumes (GMV) derived from T1-weighted MRI scans by means of Gaussian process regression. Computational lesion analysis was performed to determine the importance of each brain network in brain age prediction. Then, we identified brain age-related genes by using prior brain-wide gene expression data, followed by gene enrichment analysis using Metascape. As a result, the prediction model successfully inferred an individual's brain age and the computational lesion prediction results identified the central executive network as a vital network in brain age prediction (Steiger's = 2.114, = 0.035). In addition, the brain age-related genes were enriched in Gene Ontology (GO) processes/Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways grouped into numbers of clusters, such as regulation of iron transmembrane transport, synaptic signaling, synapse organization, retrograde endocannabinoid signaling (e.g., dopaminergic synapse), behavior (e.g., memory and associative learning), neurotransmitter secretion, and dendrite development. In all, these results reveal that the GMV of the central executive network played a vital role in predicting brain age and bridged the gap between transcriptome and neuroimaging promoting an integrative understanding of the pathophysiology of brain age.

摘要

最近,将神经影像学与机器学习方法相结合的研究成功推断出个体的脑龄,并且其与实际年龄的差异被用于识别与年龄相关的疾病。然而,哪些脑网络在脑龄预测中起决定性作用以及脑龄的潜在生物学基础仍然未知。为了回答这些问题,我们通过高斯过程回归,从西南大学成人寿命数据集(n = 492)中T1加权MRI扫描得出的灰质体积(GMV)估计个体的脑龄。进行了计算性病变分析,以确定每个脑网络在脑龄预测中的重要性。然后,我们利用先前的全脑基因表达数据识别与脑龄相关的基因,随后使用Metascape进行基因富集分析。结果,预测模型成功推断出个体的脑龄,并且计算性病变预测结果确定中央执行网络是脑龄预测中的一个重要网络(斯泰格Z = 2.114,p = 0.035)。此外,与脑龄相关的基因在基因本体(GO)过程/京都基因与基因组百科全书(KEGG)通路中富集,这些通路被分组为多个簇,如铁跨膜转运的调节、突触信号传导、突触组织、逆行内源性大麻素信号传导(如多巴胺能突触)、行为(如记忆和联想学习)、神经递质分泌和树突发育。总之,这些结果表明中央执行网络的GMV在预测脑龄中起重要作用,并弥合了转录组和神经影像学之间的差距,促进了对脑龄病理生理学的综合理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7c4/8453084/2d91076c1880/fnins-15-733316-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验