Department of Biological Sciences, St John's University, Queens, New York, USA.
Department of Biological Sciences, St John's University, Queens, New York, USA.
J Biol Chem. 2021 Nov;297(5):101246. doi: 10.1016/j.jbc.2021.101246. Epub 2021 Sep 25.
Proliferating cells coordinate histone and DNA synthesis to maintain correct stoichiometry for chromatin assembly. Histone mRNA levels must be repressed when DNA replication is inhibited to prevent toxicity and genome instability due to free non-chromatinized histone proteins. In mammalian cells, replication stress triggers degradation of histone mRNAs, but it is unclear if this mechanism is conserved from other species. The aim of this study was to identify the histone mRNA decay pathway in the yeast Saccharomyces cerevisiae and determine the mechanism by which DNA replication stress represses histone mRNAs. Using reverse transcription-quantitative PCR and chromatin immunoprecipitation-quantitative PCR, we show here that histone mRNAs can be degraded by both 5' → 3' and 3' → 5' pathways; however, replication stress does not trigger decay of histone mRNA in yeast. Rather, replication stress inhibits transcription of histone genes by removing the histone gene-specific transcription factors Spt10p and Spt21p from histone promoters, leading to disassembly of the preinitiation complexes and eviction of RNA Pol II from histone genes by a mechanism facilitated by checkpoint kinase Rad53p and histone chaperone Asf1p. In contrast, replication stress does not remove SCB-binding factor transcription complex, another activator of histone genes, from the histone promoters, suggesting that Spt10p and Spt21p have unique roles in the transcriptional downregulation of histone genes during replication stress. Together, our data show that, unlike in mammalian cells, replication stress in yeast does not trigger decay of histone mRNAs but inhibits histone transcription.
增殖细胞协调组蛋白和 DNA 合成,以维持染色质组装的正确化学计量比。当 DNA 复制受到抑制时,组蛋白 mRNA 水平必须受到抑制,以防止由于游离的非染色质组蛋白蛋白引起的毒性和基因组不稳定性。在哺乳动物细胞中,复制应激会触发组蛋白 mRNA 的降解,但尚不清楚该机制是否在其他物种中保守。本研究的目的是鉴定酵母 Saccharomyces cerevisiae 中的组蛋白 mRNA 降解途径,并确定 DNA 复制应激抑制组蛋白 mRNA 的机制。通过反转录定量 PCR 和染色质免疫沉淀定量 PCR,我们在这里表明,组蛋白 mRNA 可以通过 5'→3'和 3'→5'途径进行降解;然而,复制应激不会在酵母中触发组蛋白 mRNA 的降解。相反,复制应激通过从组蛋白启动子上除去组蛋白基因特异性转录因子 Spt10p 和 Spt21p,来抑制组蛋白基因的转录,从而导致起始前复合物的解体,并通过检查点激酶 Rad53p 和组蛋白伴侣 Asf1p 促进的机制,将 RNA Pol II 从组蛋白基因中驱逐出去。相比之下,复制应激不会从组蛋白启动子上除去 SCB 结合因子转录复合物,另一种组蛋白基因的激活子,这表明 Spt10p 和 Spt21p 在复制应激期间组蛋白基因的转录下调中具有独特的作用。总之,我们的数据表明,与哺乳动物细胞不同,酵母中的复制应激不会触发组蛋白 mRNA 的降解,而是抑制组蛋白转录。