Suppr超能文献

信息论离群检测:未知样本的无缝检测。

Entropic Out-of-Distribution Detection: Seamless Detection of Unknown Examples.

出版信息

IEEE Trans Neural Netw Learn Syst. 2022 Jun;33(6):2350-2364. doi: 10.1109/TNNLS.2021.3112897. Epub 2022 Jun 1.

Abstract

In this article, we argue that the unsatisfactory out-of-distribution (OOD) detection performance of neural networks is mainly due to the SoftMax loss anisotropy and propensity to produce low entropy probability distributions in disagreement with the principle of maximum entropy. On the one hand, current OOD detection approaches usually do not directly fix the SoftMax loss drawbacks, but rather build techniques to circumvent it. Unfortunately, those methods usually produce undesired side effects (e.g., classification accuracy drop, additional hyperparameters, slower inferences, and collecting extra data). On the other hand, we propose replacing SoftMax loss with a novel loss function that does not suffer from the mentioned weaknesses. The proposed IsoMax loss is isotropic (exclusively distance-based) and provides high entropy posterior probability distributions. Replacing the SoftMax loss by IsoMax loss requires no model or training changes. Additionally, the models trained with IsoMax loss produce as fast and energy-efficient inferences as those trained using SoftMax loss. Moreover, no classification accuracy drop is observed. The proposed method does not rely on outlier/background data, hyperparameter tuning, temperature calibration, feature extraction, metric learning, adversarial training, ensemble procedures, or generative models. Our experiments showed that IsoMax loss works as a seamless SoftMax loss drop-in replacement that significantly improves neural networks' OOD detection performance. Hence, it may be used as a baseline OOD detection approach to be combined with current or future OOD detection techniques to achieve even higher results.

摘要

在本文中,我们认为神经网络在分布外 (OOD) 检测方面的性能不理想,主要是由于 SoftMax 损失的各向异性以及产生与最大熵原理不一致的低熵概率分布的倾向。一方面,当前的 OOD 检测方法通常不会直接解决 SoftMax 损失的缺点,而是构建技术来规避它。不幸的是,这些方法通常会产生不良的副作用(例如,分类准确性下降、额外的超参数、推理速度变慢和收集额外的数据)。另一方面,我们提出用一种新的损失函数来替代 SoftMax 损失,该损失函数不会受到上述弱点的影响。所提出的 IsoMax 损失是各向同性的(仅基于距离),并提供高熵后验概率分布。用 IsoMax 损失替代 SoftMax 损失不需要对模型或训练进行任何更改。此外,使用 IsoMax 损失训练的模型与使用 SoftMax 损失训练的模型一样快速和节能地进行推理。此外,不会观察到分类准确性下降。该方法不依赖于异常值/背景数据、超参数调整、温度校准、特征提取、度量学习、对抗训练、集成过程或生成模型。我们的实验表明,IsoMax 损失可作为 SoftMax 损失的无缝替代品,显著提高神经网络的 OOD 检测性能。因此,它可以用作基线 OOD 检测方法,与当前或未来的 OOD 检测技术结合使用,以获得更高的效果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验