Suppr超能文献

细胞精度下荧光显微镜大量数据的交互式分析

Interactive Analysis for Large Volume Data from Fluorescence Microscopy at Cellular Precision.

作者信息

Wan Yong, Holman Holly A, Hansen Charles

机构信息

The University of Utah, Salt Lake City, 84112, USA.

出版信息

Comput Graph. 2021 Aug;98:138-149. doi: 10.1016/j.cag.2021.05.006. Epub 2021 May 24.

Abstract

The main objective for understanding fluorescence microscopy data is to investigate and evaluate the fluorescent signal intensity distributions as well as their spatial relationships across multiple channels. The quantitative analysis of 3D fluorescence microscopy data needs interactive tools for researchers to select and focus on relevant biological structures. We developed an interactive tool based on volume visualization techniques and GPU computing for streamlining rapid data analysis. Our main contribution is the implementation of common data quantification functions on streamed volumes, providing interactive analyses on large data without lengthy preprocessing. Data segmentation and quantification are coupled with brushing and executed at an interactive speed. A large volume is partitioned into data bricks, and only user-selected structures are analyzed to constrain the computational load. We designed a framework to assemble a sequence of GPU programs to handle brick borders and stitch analysis results. Our tool was developed in collaboration with domain experts and has been used to identify cell types. We demonstrate a workflow to analyze cells in vestibular epithelia of transgenic mice.

摘要

理解荧光显微镜数据的主要目的是研究和评估荧光信号强度分布及其在多个通道间的空间关系。三维荧光显微镜数据的定量分析需要交互式工具,以便研究人员选择并聚焦于相关生物结构。我们基于体可视化技术和GPU计算开发了一种交互式工具,用于简化快速数据分析。我们的主要贡献是在流式体数据上实现了常见的数据量化功能,无需冗长的预处理即可对大数据进行交互式分析。数据分割和量化与擦除操作相结合,并以交互速度执行。将一个大体积数据划分为数据块,仅对用户选择的结构进行分析以限制计算量。我们设计了一个框架来组装一系列GPU程序,以处理数据块边界并拼接分析结果。我们的工具是与领域专家合作开发的,已用于识别细胞类型。我们展示了一种分析转基因小鼠前庭上皮细胞的工作流程。

相似文献

1
Interactive Analysis for Large Volume Data from Fluorescence Microscopy at Cellular Precision.
Comput Graph. 2021 Aug;98:138-149. doi: 10.1016/j.cag.2021.05.006. Epub 2021 May 24.
2
FluoRender: joint freehand segmentation and visualization for many-channel fluorescence data analysis.
BMC Bioinformatics. 2017 May 26;18(1):280. doi: 10.1186/s12859-017-1694-9.
3
Semi-automatic stitching of filamentous structures in image stacks from serial-section electron tomography.
J Microsc. 2021 Oct;284(1):25-44. doi: 10.1111/jmi.13039. Epub 2021 Jul 9.
6
Fast Compressed Segmentation Volumes for Scientific Visualization.
IEEE Trans Vis Comput Graph. 2024 Jan;30(1):12-22. doi: 10.1109/TVCG.2023.3326573. Epub 2023 Dec 25.
7
Imalytics Preclinical: Interactive Analysis of Biomedical Volume Data.
Theranostics. 2016 Jan 1;6(3):328-41. doi: 10.7150/thno.13624. eCollection 2016.
8
An interactive visualization tool for multi-channel confocal microscopy data in neurobiology research.
IEEE Trans Vis Comput Graph. 2009 Nov-Dec;15(6):1489-96. doi: 10.1109/TVCG.2009.118.

本文引用的文献

1
Measurement of co-localization of objects in dual-colour confocal images.
J Microsc. 1993 Mar;169(3):375-382. doi: 10.1111/j.1365-2818.1993.tb03313.x.
2
Developmental GAD2 Expression Reveals Progenitor-like Cells with Calcium Waves in Mammalian Crista Ampullaris.
iScience. 2020 Aug 21;23(8):101407. doi: 10.1016/j.isci.2020.101407. Epub 2020 Jul 24.
3
Spontaneous and Acetylcholine Evoked Calcium Transients in the Developing Mouse Utricle.
Front Cell Neurosci. 2019 May 7;13:186. doi: 10.3389/fncel.2019.00186. eCollection 2019.
4
ImageJ2: ImageJ for the next generation of scientific image data.
BMC Bioinformatics. 2017 Nov 29;18(1):529. doi: 10.1186/s12859-017-1934-z.
5
FluoRender: joint freehand segmentation and visualization for many-channel fluorescence data analysis.
BMC Bioinformatics. 2017 May 26;18(1):280. doi: 10.1186/s12859-017-1694-9.
6
Output-Sensitive Filtering of Streaming Volume Data.
Comput Graph Forum. 2017 Jan;36(1):249-262. doi: 10.1111/cgf.12799. Epub 2016 Mar 1.
7
Interactive Volume Exploration of Petascale Microscopy Data Streams Using a Visualization-Driven Virtual Memory Approach.
IEEE Trans Vis Comput Graph. 2012 Dec;18(12):2285-94. doi: 10.1109/TVCG.2012.240.
8
Sparse PDF Volumes for Consistent Multi-Resolution Volume Rendering.
IEEE Trans Vis Comput Graph. 2014 Dec;20(12):2417-26. doi: 10.1109/TVCG.2014.2346324.
9
An Analysis of Scalable GPU-Based Ray-Guided Volume Rendering.
Proc IEEE Symp Large Scale Data Anal Vis. 2013 Oct;2013:43-51. doi: 10.1109/LDAV.2013.6675157.
10
Synthetic Brainbows.
Comput Graph Forum. 2013 Jun 1;32(3prt4):471-480. doi: 10.1111/cgf.12134.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验