Wan Yong, Holman Holly A, Hansen Charles
The University of Utah, Salt Lake City, 84112, USA.
Comput Graph. 2021 Aug;98:138-149. doi: 10.1016/j.cag.2021.05.006. Epub 2021 May 24.
The main objective for understanding fluorescence microscopy data is to investigate and evaluate the fluorescent signal intensity distributions as well as their spatial relationships across multiple channels. The quantitative analysis of 3D fluorescence microscopy data needs interactive tools for researchers to select and focus on relevant biological structures. We developed an interactive tool based on volume visualization techniques and GPU computing for streamlining rapid data analysis. Our main contribution is the implementation of common data quantification functions on streamed volumes, providing interactive analyses on large data without lengthy preprocessing. Data segmentation and quantification are coupled with brushing and executed at an interactive speed. A large volume is partitioned into data bricks, and only user-selected structures are analyzed to constrain the computational load. We designed a framework to assemble a sequence of GPU programs to handle brick borders and stitch analysis results. Our tool was developed in collaboration with domain experts and has been used to identify cell types. We demonstrate a workflow to analyze cells in vestibular epithelia of transgenic mice.
理解荧光显微镜数据的主要目的是研究和评估荧光信号强度分布及其在多个通道间的空间关系。三维荧光显微镜数据的定量分析需要交互式工具,以便研究人员选择并聚焦于相关生物结构。我们基于体可视化技术和GPU计算开发了一种交互式工具,用于简化快速数据分析。我们的主要贡献是在流式体数据上实现了常见的数据量化功能,无需冗长的预处理即可对大数据进行交互式分析。数据分割和量化与擦除操作相结合,并以交互速度执行。将一个大体积数据划分为数据块,仅对用户选择的结构进行分析以限制计算量。我们设计了一个框架来组装一系列GPU程序,以处理数据块边界并拼接分析结果。我们的工具是与领域专家合作开发的,已用于识别细胞类型。我们展示了一种分析转基因小鼠前庭上皮细胞的工作流程。