Shafiei Mohammad, Toreyhi Hossein, Firoozpour Loghman, Akbarzadeh Tahmineh, Amini Mohsen, Hosseinzadeh Elaheh, Hashemzadeh Mehrnoosh, Peyton Lee, Lotfali Ensieh, Foroumadi Alireza
Department of Medicinal Chemistry, Faculty of Pharmacy, and Drug Design & Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran.
Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 19839-63113, Iran.
ACS Omega. 2021 Sep 16;6(38):24981-25001. doi: 10.1021/acsomega.1c04016. eCollection 2021 Sep 28.
Demand has arisen for developing new azole antifungal agents with the growth of the resistant rate of infective fungal species to current azole antifungals in recent years. Accordingly, the present study reports the synthesis of novel fluconazole (FLC) analogues bearing urea functionality that led to discovering new azole agents with promising antifungal activities. In particular, compounds and displayed broad-spectrum activity and superior antifungal capabilities compared to the standard drug FLC against sensitive and resistant (). The highly active compounds and had potent antibiofilm properties against FLC-resistant species. Additionally, these compounds exhibited very low toxicity for three mammalian cell lines and human red blood cells. Time-kill studies revealed that our synthesized compounds displayed a fungicidal mechanism toward fungal growth. Furthermore, a density functional theory (DFT) calculation, additional docking, and independent gradient model (IGM) studies were performed to analyze their structure-activity relationship (SAR) and to assess the molecular interactions in the related target protein. Finally, results represented a significant reduction in the tissue fungal burden and improvements in the survival rate in a mice model of systemic candidiasis along with and studies, demonstrating the therapeutic efficiency of compounds and as novel leads for candidiasis drug discovery.
近年来,随着感染性真菌物种对当前唑类抗真菌药物的耐药率上升,开发新型唑类抗真菌药物的需求应运而生。因此,本研究报告了带有脲官能团的新型氟康唑(FLC)类似物的合成,这导致发现了具有有前景的抗真菌活性的新型唑类药物。特别是,与标准药物FLC相比,化合物 和 对敏感和耐药的 ()表现出广谱活性和优异的抗真菌能力。高活性化合物 和 对FLC耐药的 物种具有强大的抗生物膜特性。此外,这些化合物对三种哺乳动物细胞系和人类红细胞表现出非常低的毒性。时间 - 杀菌研究表明,我们合成的化合物对真菌生长表现出杀菌机制。此外,进行了密度泛函理论(DFT)计算、额外的对接和独立梯度模型(IGM)研究,以分析它们的构效关系(SAR)并评估相关靶蛋白中的分子相互作用。最后, 结果表明,在系统性念珠菌病小鼠模型中,组织真菌负荷显著降低,存活率提高,同时进行了 和 研究,证明了化合物 和 作为念珠菌病药物发现的新型先导物的治疗效果。