Suppr超能文献

一种综合网络分析方法,用于鉴定调控人类造血干细胞衰老的潜在关键基因、转录因子和 microRNAs。

An integrated network analysis approach to identify potential key genes, transcription factors, and microRNAs regulating human hematopoietic stem cell aging.

机构信息

Virology Unit and Bioinformatics Centre, Institute of Microbial Technology, Council of Scientific & Industrial Research, Chandigarh-160036, India.

Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.

出版信息

Mol Omics. 2021 Dec 6;17(6):967-984. doi: 10.1039/d1mo00199j.

Abstract

Hematopoietic stem cells (HSCs) undergo functional deterioration with increasing age that causes loss of their self-renewal and regenerative potential. Despite various efforts, significant success in identifying molecular regulators of HSC aging has not been achieved, one prime reason being the non-availability of appropriate human HSC samples. To demonstrate the scope of integrating and re-analyzing the HSC transcriptomics data available, we used existing tools and databases to structure a sequential data analysis pipeline to predict potential candidate genes, transcription factors, and microRNAs simultaneously. This sequential approach comprises (i) collecting matched young and aged mice HSC sample datasets, (ii) identifying differentially expressed genes, (iii) identifying human homologs of differentially expressed genes, (iv) inferring gene co-expression network modules, and (v) inferring the microRNAtranscription factorgene regulatory network. Systems-level analyses of HSC interaction networks provided various insights based on which several candidates were predicted. For example, 16 HSC aging-related candidate genes were predicted (, CD38, BRCA1, AGTR1, GSTM1, ) from GCN analysis. Following this, the shortest path distance-based analyses of the regulatory network predicted several novel candidate miRNAs and TFs. Among these, miR-124-3p was a common regulator in candidate gene modules, while TFs MYC and SP1 were identified to regulate various candidate genes. Based on the regulatory interactions among candidate genes, TFs, and miRNAs, a potential regulation model of biological processes in each of the candidate modules was predicted, which provided systems-level insights into the molecular complexity of each module to regulate HSC aging.

摘要

造血干细胞(HSCs)随着年龄的增长而发生功能恶化,导致其自我更新和再生潜能的丧失。尽管进行了各种努力,但尚未在鉴定 HSC 衰老的分子调节剂方面取得重大成功,一个主要原因是缺乏适当的人类 HSC 样本。为了展示整合和重新分析现有 HSC 转录组学数据的范围,我们使用现有的工具和数据库构建了一个顺序数据分析管道,以同时预测潜在的候选基因、转录因子和 microRNA。这种顺序方法包括:(i)收集匹配的年轻和衰老小鼠 HSC 样本数据集;(ii)识别差异表达基因;(iii)识别差异表达基因的人类同源物;(iv)推断基因共表达网络模块;(v)推断 microRNA-转录因子-基因调控网络。基于对 HSC 相互作用网络的系统水平分析,提出了各种假设,根据这些假设预测了几个候选基因。例如,通过 GCN 分析预测了 16 个与 HSC 衰老相关的候选基因(CD38、BRCA1、AGTR1、GSTM1 等)。之后,基于调控网络的最短路径距离分析预测了几个新的候选 miRNA 和 TF。其中,miR-124-3p 是候选基因模块中的共同调节因子,而 TF MYC 和 SP1 被鉴定为调节各种候选基因。基于候选基因、TF 和 miRNA 之间的调控关系,预测了每个候选模块中生物过程的潜在调控模型,为每个模块调节 HSC 衰老的分子复杂性提供了系统水平的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验