Institute for Chemistry and Biochemistry, Freie Universität Berlin; International Max-Planck Research School for Biology and Computation.
Institute for Chemistry and Biochemistry, Freie Universität Berlin.
J Vis Exp. 2021 Sep 14(175). doi: 10.3791/62608.
Transforming Growth Factor β (TGFβ)/Bone Morphogenetic Protein (BMP) signaling is tightly regulated and balanced during the development and homeostasis of the vasculature system Therefore, deregulation in this signaling pathway results in severe vascular pathologies, such as pulmonary artery hypertension, hereditary hemorrhagic telangiectasia, and atherosclerosis. Endothelial cells (ECs), as the innermost layer of blood vessels, are constantly exposed to fluid shear stress (SS). Abnormal patterns of fluid SS have been shown to enhance TGFβ/BMP signaling, which, together with other stimuli, induce atherogenesis. In relation to this, atheroprone, low laminar SS was found to enhance TGFβ/BMP signaling while atheroprotective, high laminar SS, diminishes this signaling. To efficiently analyze the activation of these pathways, we designed a workflow to investigate the formation of transcription factor complexes under low laminar SS and high laminar SS conditions using a commercially available pneumatic pump system and proximity ligation assay (PLA). Active TGFβ/BMP-signaling requires the formation of trimeric SMAD complexes consisting of two regulatory SMADs (R-SMAD); SMAD2/3 and SMAD1/5/8 for TGFβ and BMP signaling, respectively) with a common mediator SMAD (co-SMAD; SMAD4). Using PLA targeting different subunits of the trimeric SMAD-complex, i.e., either R-SMAD/co-SMAD or R-SMAD/R-SMAD, the formation of active SMAD transcription factor complexes can be measured quantitatively and spatially using fluorescence microscopy. The usage of flow slides with 6 small parallel channels, that can be connected in series, allows for the investigation of the transcription factor complex formation and inclusion of necessary controls. The workflow explained here can be easily adapted for studies targeting the proximity of SMADs to other transcription factors or to transcription factor complexes other than SMADs, in different fluid SS conditions. The workflow presented here shows a quick and effective way to study the fluid SS induced TGFβ/BMP signaling in ECs, both quantitatively and spatially.
转化生长因子 β(TGFβ)/骨形态发生蛋白(BMP)信号在脉管系统的发育和稳态过程中受到严格调控和平衡。因此,该信号通路的失调会导致严重的血管病变,如肺动脉高压、遗传性出血性毛细血管扩张症和动脉粥样硬化。内皮细胞(ECs)作为血管的最内层,不断受到流体切应力(SS)的影响。异常的流体 SS 模式已被证明可增强 TGFβ/BMP 信号,该信号与其他刺激一起,诱导动脉粥样硬化形成。与此相关,发现动脉粥样硬化易感的低层流 SS 增强 TGFβ/BMP 信号,而动脉粥样硬化保护的高层流 SS 则减弱该信号。为了有效地分析这些途径的激活,我们设计了一种工作流程,使用市售的气动泵系统和邻近连接分析(PLA)来研究低层流 SS 和高层流 SS 条件下转录因子复合物的形成。活性 TGFβ/BMP 信号需要形成由两个调节 SMAD(R-SMAD)组成的三聚体 SMAD 复合物;SMAD2/3 和 SMAD1/5/8 分别用于 TGFβ 和 BMP 信号)与共同介体 SMAD(共 SMAD;SMAD4)。使用针对三聚体 SMAD 复合物的不同亚基(即 R-SMAD/co-SMAD 或 R-SMAD/R-SMAD)的 PLA 靶向,可使用荧光显微镜定量和空间测量活性 SMAD 转录因子复合物的形成。使用带有 6 个小平行通道的流动载玻片,这些通道可以串联连接,可用于研究转录因子复合物的形成并包含必要的对照。这里介绍的工作流程可以很容易地适应于在不同流体 SS 条件下针对 SMAD 与其他转录因子的接近度或除 SMAD 之外的转录因子复合物的研究。这里呈现的工作流程显示了一种快速有效的方法来研究 EC 中流体 SS 诱导的 TGFβ/BMP 信号,无论是在定量还是在空间上。