Suppr超能文献

通过毛细管辅助快速传输受限在给定微通道内的液滴来增强雾收集

Enhanced Fog Harvesting through Capillary-Assisted Rapid Transport of Droplet Confined in the Given Microchannel.

作者信息

Wang Qianqian, He Yi, Geng Xinxin, Hou Yongping, Zheng Yongmei

机构信息

Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry and Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University (BUAA), Beijing 100191, P. R. China.

出版信息

ACS Appl Mater Interfaces. 2021 Oct 13;13(40):48292-48300. doi: 10.1021/acsami.1c14696. Epub 2021 Oct 5.

Abstract

A novel integrated bioinspired surface is fabricated by using an innovative capillarity-induced selective oxidation method, to achieve the combination of the fog-collecting characteristics of a variety of creatures, i.e., the micronanostructures of spider silk, the wettable patterns of desert beetle, the conical structure of cactus spine, and the hierarchical microchannel of trichome. The fog is captured effectively via multistructures on the cone tips, and captured droplet is collected and confined in the microchannel to realize rapid transport via the formation of wettable pattern on the surface and the introduction of wettable gradient in the microchannel. Consequently, the fog harvest efficiency reaches 2.48 g/h, increasing to nearly 320% compared to the normal surface. More interestingly, similar to trichome, the surface also presents two transport modes, namely, Mode I (water transport along dry microchannel) and Mode II (succeeding water slippage on the water film). In Mode II, the velocity of 34.10 mm/s is about three times faster than that on the trichome. Such a design of integrated bioinspired surface may present potential applications in high-efficiency water collection systems, microfluidic devices, and others.

摘要

通过一种创新的毛细作用诱导选择性氧化方法制备了一种新型的集成仿生表面,以实现多种生物的雾收集特性的结合,即蜘蛛丝的微米纳米结构、沙漠甲虫的可湿性图案、仙人掌刺的锥形结构以及毛状体的分级微通道。雾通过锥体尖端的多种结构被有效捕获,捕获的液滴被收集并限制在微通道中,通过在表面形成可湿性图案和在微通道中引入可湿性梯度来实现快速传输。因此,雾收集效率达到2.48 g/h,与普通表面相比提高到近320%。更有趣的是,与毛状体类似,该表面还呈现出两种传输模式,即模式I(水沿干燥微通道传输)和模式II(水在水膜上的后续滑移)。在模式II中,34.10 mm/s的速度比毛状体上的速度快约三倍。这种集成仿生表面的设计可能在高效集水系统、微流体装置等方面具有潜在应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验