Suppr超能文献

用于增强数据分类的量子半监督生成对抗网络。

Quantum semi-supervised generative adversarial network for enhanced data classification.

作者信息

Nakaji Kouhei, Yamamoto Naoki

机构信息

Department of Applied Physics and Physico-Informatics and Quantum Computing Center, Keio University, Hiyoshi 3-14-1, Kohoku, Yokohama, 223-8522, Japan.

出版信息

Sci Rep. 2021 Oct 4;11(1):19649. doi: 10.1038/s41598-021-98933-6.

Abstract

In this paper, we propose the quantum semi-supervised generative adversarial network (qSGAN). The system is composed of a quantum generator and a classical discriminator/classifier (D/C). The goal is to train both the generator and the D/C, so that the latter may get a high classification accuracy for a given dataset. Hence the qSGAN needs neither any data loading nor to generate a pure quantum state, implying that qSGAN is much easier to implement than many existing quantum algorithms. Also the generator can serve as a stronger adversary than a classical one thanks to its rich expressibility, and it is expected to be robust against noise. These advantages are demonstrated in a numerical simulation.

摘要

在本文中,我们提出了量子半监督生成对抗网络(qSGAN)。该系统由一个量子生成器和一个经典判别器/分类器(D/C)组成。目标是对生成器和D/C进行训练,以便后者对于给定数据集能够获得较高的分类准确率。因此,qSGAN既不需要加载任何数据,也不需要生成纯量子态,这意味着qSGAN比许多现有的量子算法更容易实现。此外,由于其丰富的表现力,生成器可以作为比经典生成器更强的对手,并且有望对噪声具有鲁棒性。这些优势在数值模拟中得到了证明。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d67/8490428/b89441e23239/41598_2021_98933_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验