Suppr超能文献

基于深度残差学习和积分成像的低光环境下三维偏振图像复原

Three-dimensional polarimetric image restoration in low light with deep residual learning and integral imaging.

作者信息

Usmani Kashif, O'Connor Timothy, Javidi Bahram

出版信息

Opt Express. 2021 Aug 30;29(18):29505-29517. doi: 10.1364/OE.435900.

Abstract

Polarimetric imaging can become challenging in degraded environments such as low light illumination conditions or in partial occlusions. In this paper, we propose the denoising convolutional neural network (DnCNN) model with three-dimensional (3D) integral imaging to enhance the reconstructed image quality of polarimetric imaging in degraded environments such as low light and partial occlusions. The DnCNN is trained based on the physical model of the image capture in degraded environments to enhance the visualization of polarimetric imaging where simulated low light polarimetric images are used in the training process. The DnCNN model is experimentally tested on real polarimetric images captured in real low light environments and in partial occlusion. The performance of DnCNN model is compared with that of total variation denoising. Experimental results demonstrate that DnCNN performs better than total variation denoising for polarimetric integral imaging in terms of signal-to-noise ratio and structural similarity index measure in low light environments as well as low light environments under partial occlusions. To the best of our knowledge, this is the first report of polarimetric 3D object visualization and restoration in low light environments and occlusions using DnCNN with integral imaging. The proposed approach is also useful for 3D image restoration in conventional (non-polarimetric) integral imaging in a degraded environment.

摘要

在诸如低光照条件或部分遮挡等退化环境中,偏振成像可能会变得具有挑战性。在本文中,我们提出了具有三维(3D)积分成像的去噪卷积神经网络(DnCNN)模型,以提高在低光照和部分遮挡等退化环境中偏振成像的重建图像质量。DnCNN基于退化环境中图像捕获的物理模型进行训练,以增强偏振成像的可视化效果,其中在训练过程中使用模拟的低光照偏振图像。DnCNN模型在真实低光照环境和部分遮挡情况下捕获的真实偏振图像上进行了实验测试。将DnCNN模型的性能与全变差去噪的性能进行了比较。实验结果表明,在低光照环境以及部分遮挡下的低光照环境中,就信噪比和结构相似性指数度量而言,DnCNN在偏振积分成像方面比全变差去噪表现更好。据我们所知,这是首次使用带积分成像的DnCNN在低光照环境和遮挡中进行偏振3D物体可视化和恢复的报告。所提出的方法对于退化环境中传统(非偏振)积分成像的3D图像恢复也很有用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验