Suppr超能文献

预测房颤缺血性脑卒中患者的复发卒中:风险评分模型的建立与验证。

Prediction of recurrent stroke among ischemic stroke patients with atrial fibrillation: Development and validation of a risk score model.

机构信息

Department of Neurology and Cerebrovascular Center, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam-si, Republic of Korea.

Department of Biostatistics, College of Medicine, Korea University, Seoul, Republic of Korea.

出版信息

PLoS One. 2021 Oct 8;16(10):e0258377. doi: 10.1371/journal.pone.0258377. eCollection 2021.

Abstract

BACKGROUND

There is currently no validated risk prediction model for recurrent events among patients with acute ischemic stroke (AIS) and atrial fibrillation (AF). Considering that the application of conventional risk scores has contextual limitations, new strategies are needed to develop such a model. Here, we set out to develop and validate a comprehensive risk prediction model for stroke recurrence in AIS patients with AF.

METHODS

AIS patients with AF were collected from multicenter registries in South Korea and Japan. A developmental dataset was constructed with 5648 registered cases from both countries for the period 2011‒2014. An external validation dataset was also created, consisting of Korean AIS subjects with AF registered between 2015 and 2018. Event outcomes were collected during 1 year after the index stroke. A multivariable prediction model was developed using the Fine-Gray subdistribution hazard model with non-stroke mortality as a competing risk. The model incorporated 21 clinical variables and was further validated, calibrated, and revised using the external validation dataset.

RESULTS

The developmental dataset consisted of 4483 Korean and 1165 Japanese patients (mean age, 74.3 ± 10.2 years; male 53%); 338 patients (6%) had recurrent stroke and 903 (16%) died. The clinical profiles of the external validation set (n = 3668) were comparable to those of the developmental dataset. The c-statistics of the final model was 0.68 (95% confidence interval, 0.66 ‒0.71). The developed prediction model did not show better discriminative ability for predicting stroke recurrence than the conventional risk prediction tools (CHADS2, CHA2DS2-VASc, and ATRIA).

CONCLUSIONS

Neither conventional risk stratification tools nor our newly developed comprehensive prediction model using available clinical factors seemed to be suitable for identifying patients at high risk of recurrent ischemic stroke among AIS patients with AF in this modern direct oral anticoagulant era. Detailed individual information, including imaging, may be warranted to build a more robust and precise risk prediction model for stroke survivors with AF.

摘要

背景

目前尚无针对急性缺血性脑卒中(AIS)合并心房颤动(AF)患者复发性事件的经验证风险预测模型。鉴于传统风险评分的应用具有背景局限性,需要采用新策略来开发此类模型。在此,我们旨在开发和验证一种用于 AIS 合并 AF 患者中风复发的综合风险预测模型。

方法

从韩国和日本的多中心登记处收集 AIS 合并 AF 患者。使用来自这两个国家 2011 年至 2014 年的 5648 例登记病例构建了一个发展数据集。还创建了一个外部验证数据集,包括韩国 2015 年至 2018 年登记的 AIS 合并 AF 患者。事件结局在索引性中风后 1 年内收集。使用 Fine-Gray 亚分布风险模型,以非中风死亡率为竞争风险,建立多变量预测模型。该模型纳入了 21 个临床变量,并使用外部验证数据集进行进一步验证、校准和修订。

结果

发展数据集包含 4483 例韩国患者和 1165 例日本患者(平均年龄 74.3±10.2 岁;男性占 53%);338 例患者(6%)发生复发性中风,903 例患者(16%)死亡。外部验证集(n=3668)的临床特征与发展数据集相似。最终模型的 c 统计量为 0.68(95%置信区间:0.66-0.71)。与传统风险预测工具(CHADS2、CHA2DS2-VASc 和 ATRIA)相比,所开发的预测模型在预测中风复发方面并未显示出更好的区分能力。

结论

在现代直接口服抗凝剂时代,传统风险分层工具或我们使用现有临床因素开发的新综合预测模型均不能用于识别 AIS 合并 AF 患者中复发性缺血性中风的高危患者。可能需要详细的个体信息,包括影像学信息,以建立更稳健、更精确的 AF 中风幸存者风险预测模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb01/8500448/b2ee6aafa380/pone.0258377.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验