Departments of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, The University of Texas Medical Branch, Galveston, TX, USA.
Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India.
Methods Mol Biol. 2022;2303:13-23. doi: 10.1007/978-1-0716-1398-6_2.
Solution nuclear magnetic resonance (NMR) spectroscopy and, in particular, chemical shift perturbation (CSP) titration experiments are ideally suited for mapping and characterizing the binding interface of macromolecular complexes. H-N-HSQC-based CSP studies have become the method of choice due to their simplicity, short-time requirements, and minimal working knowledge of NMR. CSP studies for characterizing protein-glycosaminoglycan (GAG) interactions can be challenging due to binding-induced aggregation/precipitation and/or poor quality data. In this chapter, we discuss how optimizing experimental conditions such as protein concentration, choice of buffer pH, ionic strength, and GAG size, as well as sensitivity of NMR instrumentation can overcome these roadblocks to obtain meaningful structural insights into protein-GAG interactions.
溶液核磁共振(NMR)光谱学,尤其是化学位移扰动(CSP)滴定实验,非常适合于绘制和表征大分子复合物的结合界面。由于其简单性、短时间要求和对 NMR 的最小工作知识,基于 H-N-HSQC 的 CSP 研究已成为首选方法。由于结合诱导的聚集/沉淀和/或较差的数据质量,用于表征蛋白聚糖(GAG)相互作用的 CSP 研究可能具有挑战性。在本章中,我们将讨论如何通过优化实验条件(如蛋白浓度、缓冲液 pH 值、离子强度和 GAG 大小的选择,以及 NMR 仪器的灵敏度)来克服这些障碍,从而获得对蛋白-GAG 相互作用的有意义的结构见解。