Suppr超能文献

利用体佩戴传感器测量数据快速逼近入射爆炸参数的算法开发。

Development of a Fast-Running Algorithm to Approximate Incident Blast Parameters Using Body-Mounted Sensor Measurements.

机构信息

Applied Research Associates, Inc, Albuquerque, NM 87110, USA.

Needham Consulting LLC, Albuquerque, NM 87112, USA.

出版信息

Mil Med. 2022 Oct 29;187(11-12):e1354-e1362. doi: 10.1093/milmed/usab411.

Abstract

INTRODUCTION

The Office of Naval Research sponsored the Blast Load Assessment-Sense and Test program to develop a rapid, in-field solution that could be used by team leaders, commanders, and medical personnel to make science-based stand-down decisions for service members exposed to blast overpressure. However, a critical challenge to this goal was the reliable interpretation of surface pressure data collected by body-worn blast sensors in both combat and combat training scenarios. Without an appropriate standardized metric, exposures from different blast events cannot be compared and accumulated in a service member's unique blast exposure profile. In response to these challenges, we developed the Fast Automated Signal Transformation, or FAST, algorithm to automate the processing of large amounts of pressure-time data collected by blast sensors and provide a rapid, reliable approximation of the incident blast parameters without user intervention. This paper describes the performance of the FAST algorithms developed to approximate incident blast metrics from high-explosive sources using only data from body-mounted blast sensors.

METHODS AND MATERIALS

Incident pressure was chosen as the standardized output metric because it provides a physiologically relevant estimate of the exposure to blast that can be compared across multiple events. In addition, incident pressure serves as an ideal metric because it is not directionally dependent or affected by the orientation of the operator. The FAST algorithms also preprocess data and automatically flag "not real" traces that might not be from blasts events (false positives). Elimination of any "not real" blast waveforms is essential to avoid skewing the results of subsequent analyses. To evaluate the performance of the FAST algorithms, the FAST results were compared to (1) experimentally measured pressures and (2) results from high-fidelity numerical simulations for three representative real-world events.

RESULTS

The FAST results were in good agreement with both experimental data and high-fidelity simulations for the three case studies analyzed. The first case study evaluated the performance of FAST with respect to body shielding. The predicted incident pressure by FAST for a surrogate facing the charge, side on to charge, and facing away from the charge was examined. The second case study evaluated the performance of FAST with respect to an irregular charge compared to both pressure probes and results from high-fidelity simulations. The third case study demonstrated the utility of FAST for detonations inside structures where reflections from nearby surfaces can significantly alter the incident pressure. Overall, FAST predictions accounted for the reflections, providing a pressure estimate typically within 20% of the anticipated value.

CONCLUSIONS

This paper presents a standardized approach-the FAST algorithms-to analyze body-mounted blast sensor data. FAST algorithms account for the effects of shock interactions with the body to produce an estimate of incident blast conditions, allowing for direct comparison of individual exposure from different blast events. The continuing development of FAST algorithms will include heavy weapons, providing a singular capability to rapidly interpret body-worn sensor data, and provide standard output for analysis of an individual's unique blast exposure profile.

摘要

简介

海军研究办公室资助了爆炸负荷评估-感知和测试计划,以开发一种快速的现场解决方案,供团队领导、指挥官和医务人员在服务人员暴露于爆炸超压时,基于科学做出停职决定。然而,实现这一目标的一个关键挑战是可靠地解释在战斗和战斗训练场景中佩戴在身体上的爆炸传感器收集的表面压力数据。如果没有适当的标准化指标,来自不同爆炸事件的暴露就无法进行比较,并累积在服务人员独特的爆炸暴露档案中。为了应对这些挑战,我们开发了快速自动信号转换(FAST)算法,该算法可以自动处理由爆炸传感器收集的大量压力-时间数据,并在无需用户干预的情况下快速、可靠地近似事件爆炸参数。本文描述了仅使用安装在身体上的爆炸传感器数据,从高爆炸源开发的 FAST 算法来近似事件爆炸指标的性能。

方法和材料

选择事件压力作为标准化输出指标,因为它提供了一种与爆炸暴露相关的生理相关估计,可以在多个事件之间进行比较。此外,事件压力是一种理想的指标,因为它不受方向的影响,也不受操作人员方向的影响。FAST 算法还可以预处理数据,并自动标记可能不是来自爆炸事件的“非真实”痕迹(假阳性)。消除任何“非真实”的爆炸波形对于避免后续分析结果的偏差至关重要。为了评估 FAST 算法的性能,将 FAST 结果与(1)实验测量的压力和(2)三个具有代表性的实际事件的高保真数值模拟结果进行了比较。

结果

对于分析的三个案例研究,FAST 结果与实验数据和高保真模拟结果非常吻合。第一个案例研究评估了 FAST 相对于身体屏蔽的性能。检查了 FAST 对面对电荷、侧面面对电荷和背对电荷的替代物的预测事件压力。第二个案例研究评估了 FAST 相对于不规则电荷的性能,与压力探头和高保真模拟结果进行了比较。第三个案例研究展示了 FAST 在结构内爆炸中的实用性,其中来自附近表面的反射会显著改变事件压力。总体而言,FAST 预测考虑了反射,提供的压力估计值通常在预期值的 20%以内。

结论

本文提出了一种标准化方法——FAST 算法来分析安装在身体上的爆炸传感器数据。FAST 算法考虑了冲击波与身体相互作用的影响,以产生对事件爆炸条件的估计,从而可以直接比较来自不同爆炸事件的个人暴露情况。FAST 算法的持续开发将包括重武器,提供一种快速解释佩戴式传感器数据的单一能力,并为分析个人独特的爆炸暴露档案提供标准输出。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验