Bae Dae Young, Lee Gunhee, Lee Eunsung
Department of Chemistry, Pohang University of Science and Technology, 77 Cheongam-Ro, 37673, Pohang, Republic of Korea.
Dalton Trans. 2021 Oct 19;50(40):14139-14143. doi: 10.1039/d1dt02375f.
Transition metal nitrides are key intermediates in the catalytic reduction of dinitrogen to ammonia. To date, transition metal nitride complexes with the triphenolamine (TPA) ligand have not been reported and the system with the ligand has been much less studied for ammonia formation compared with other systems. Herein, we report a series of molybdenum complexes supported by a sterically demanding TPA ligand, including a nitrido complex NMo(TPA). We achieved the stoichiometric conversion of the nitride moiety into ammonia under ambient conditions by adding proton and electron sources to NMo(TPA). However, the catalytic turnover for N reduction to ammonia was not observed in the triphenolamine ligand system unlike the Schrock system-triamidoamine ligand. Density functional theory calculation revealed that the molybdenum center favors binding NH over N by 16.9 kcal mol and the structural lability of the trigonal bipyramidal (TBP) molybdenum complex seems to prevent catalytic turnover. Our systematic study showed that the electronegativity and bond length of ancillary ligands determine the preference between N and NH, suggesting a systematic design strategy for improvement.
过渡金属氮化物是催化氮气还原成氨过程中的关键中间体。迄今为止,尚未有关于具有三酚胺(TPA)配体的过渡金属氮化物配合物的报道,并且与其他体系相比,含有该配体的体系在氨生成方面的研究要少得多。在此,我们报道了一系列由空间位阻较大的TPA配体支撑的钼配合物,包括一个氮化物配合物NMo(TPA)。通过向NMo(TPA)中加入质子和电子源,我们在环境条件下实现了氮化物部分向氨的化学计量转化。然而,与Schrock体系 - 三酰胺胺配体不同,在三酚胺配体体系中未观察到将氮还原为氨的催化周转。密度泛函理论计算表明,钼中心与NH的结合比与N的结合更有利,相差16.9 kcal/mol,并且三角双锥(TBP)钼配合物的结构不稳定性似乎阻碍了催化周转。我们的系统研究表明,辅助配体的电负性和键长决定了对N和NH的偏好,这为改进提供了一种系统的设计策略。