Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India.
Proteomics. 2022 Feb;22(3):e2000311. doi: 10.1002/pmic.202000311. Epub 2021 Oct 28.
Numerous cancer-specific prognostic models have been developed in the past, wherein one model is applicable for only one type of cancer. In this study, an attempt has been made to identify universal or multi-cancer prognostic biomarkers and develop models for predicting survival risk across different types of cancer patients. In order to accomplish this, we gauged the prognostic role of mRNA expression of 165 apoptosis-related genes across 33 cancers in the context of patient survival. Firstly, we identified specific prognostic biomarker genes for 30 cancers. The cancer-specific prognostic models achieved a minimum Hazard Ratio, HR = 1.99 and maximum HR = 41.59. Secondly, a comprehensive analysis was performed to identify universal biomarkers across many cancers. Our best prognostic model consisted of 11 genes (TOP2A, ISG20, CD44, LEF1, CASP2, PSEN1, PTK2, SATB1, SLC20A1, EREG, and CD2) and stratified risk groups across 27 cancers (HR = 1.53-HR = 11.74). The model was validated on eight independent cancer cohorts and exhibited a comparable performance. Further, we clustered cancer-types on the basis of shared survival related apoptosis genes. This approach proved helpful in development of cross-cancer prognostic models. To show its efficacy, a prognostic model consisting of 15 genes was thereby developed for LGG-KIRC pair (HR = 3.27, HR = 4.23). Additionally, we predicted potential therapeutic candidates for LGG-KIRC high risk patients.
过去已经开发了许多针对特定癌症的预后模型,其中一个模型仅适用于一种癌症。在这项研究中,我们试图确定普遍或多癌症的预后生物标志物,并开发用于预测不同类型癌症患者生存风险的模型。为了实现这一目标,我们评估了 165 个与凋亡相关的基因在 33 种癌症中的 mRNA 表达对患者生存的预后作用。首先,我们确定了 30 种癌症的特定预后生物标志物基因。癌症特异性预后模型的最小风险比,HR=1.99,最大 HR=41.59。其次,进行了全面分析以确定许多癌症中的通用生物标志物。我们的最佳预后模型由 11 个基因(TOP2A、ISG20、CD44、LEF1、CASP2、PSEN1、PTK2、SATB1、SLC20A1、EREG 和 CD2)组成,可将风险组分层到 27 种癌症(HR=1.53-HR=11.74)。该模型在 8 个独立的癌症队列中进行了验证,表现出可比的性能。此外,我们根据共享的与生存相关的凋亡基因对癌症类型进行聚类。这种方法有助于开发跨癌症的预后模型。为了证明其功效,为此开发了一个包含 15 个基因的 LGG-KIRC 对的预后模型(HR=3.27,HR=4.23)。此外,我们预测了 LGG-KIRC 高危患者的潜在治疗候选物。