Junger Dominik, Storm Johannes, Müller Steffen, Kaliske Michael, Mechtcherine Viktor
Institute of Construction Materials, Technische Universität Dresden, 01187 Dresden, Germany.
Institute of Structural Analysis, Technische Universität Dresden, 01187 Dresden, Germany.
Materials (Basel). 2021 Sep 28;14(19):5634. doi: 10.3390/ma14195634.
Strain-hardening cement-based composites are a promising class of materials for a wide variety of applications due to their considerable tensile strength and pronounced ductility caused by the development of multiple fine cracks. Nevertheless, the safe use of such composites requires sound knowledge of their mechanical behaviour under different types of loading, particularly under fatigue loading, while considering distinct influences like initial crack width and fibre orientation. To deepen this knowledge, single-fibre pull-out tests on PVA-fibres from a cementitious matrix were carried out to gain information about the micro-mechanical and degradation processes of the fibre. It could be shown that the fibres tend to rupture instead of being pulled out under quasi-static loading. When changing the loading regime to alternating loading, this failure mechanism shifts to pull-out. By varying the experimental parameters such as initial crack width, inclination angle or compressive-force level a clear influence on the fibre's crack bridging capacity could be observed associated with effects on the degradation processes. Based on the data obtained, a micro-mechanical numerical model was developed to support the assumptions and observations from single-fibre pull-out tests and to enable predictions of the performance of the material on the microscale under cyclic loading.
应变硬化水泥基复合材料因其具有相当高的抗拉强度以及由多条细裂缝发展所导致的显著延性,成为一类在广泛应用中颇具前景的材料。然而,安全使用这类复合材料需要深入了解其在不同类型荷载作用下,尤其是疲劳荷载作用下的力学行为,同时要考虑诸如初始裂缝宽度和纤维取向等不同影响因素。为深化这方面的认识,对从水泥基体中拔出的聚乙烯醇(PVA)纤维进行了单纤维拔出试验,以获取有关纤维微观力学和降解过程的信息。结果表明,在准静态荷载作用下,纤维倾向于断裂而非被拔出。当将荷载形式改为交变荷载时,这种破坏机制转变为拔出。通过改变诸如初始裂缝宽度、倾斜角度或压力水平等试验参数,可以观察到对纤维的裂缝桥接能力有明显影响,同时也对降解过程产生影响。基于所获得的数据,开发了一个微观力学数值模型,以支持单纤维拔出试验的假设和观察结果,并能够预测该材料在循环荷载作用下微观尺度上的性能。