Suppr超能文献

基于机器视觉的整体式螺旋立铣刀磨损与破损检测

Wear and Breakage Detection of Integral Spiral End Milling Cutters Based on Machine Vision.

作者信息

Wei Wenming, Yin Jia, Zhang Jun, Zhang Huijie, Lu Zhuangzhuang

机构信息

State Key Laboratory for Manufacturing Systems Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, China.

出版信息

Materials (Basel). 2021 Sep 30;14(19):5690. doi: 10.3390/ma14195690.

Abstract

Tool wear and breakage detection technologies are of vital importance for the development of automatic machining systems and improvement in machining quality and efficiency. The monitoring of integral spiral end milling cutters, however, has rarely been investigated due to their complex structures. In this paper, an image acquisition system and image processing methods are developed for the wear and breakage detection of milling cutters based on machine vision. The image acquisition system is composed of three light sources and two cameras mounted on a moving frame, which renders the system applicable in cutters of different dimensions and shapes. The images captured by the acquisition system are then preprocessed with denoising and contrast enhancing operations. The failure regions on the rake face, flank face and tool tip of the cutter are extracted with the Otsu thresholding method and the Markov Random Field image segmentation method afterwards. Eventually, the feasibility of the proposed image acquisition system and image processing methods is demonstrated through an experiment of titanium alloy machining. The proposed image acquisition system and image processing methods not only provide high quality detection of the integral spiral end milling cutter but can also be easily converted to detect other cutting systems with complex structures.

摘要

刀具磨损和破损检测技术对于自动加工系统的发展以及加工质量和效率的提高至关重要。然而,由于整体螺旋立铣刀结构复杂,对其监测的研究很少。本文基于机器视觉开发了一种用于铣刀磨损和破损检测的图像采集系统及图像处理方法。该图像采集系统由三个光源和安装在移动框架上的两个相机组成,这使得该系统适用于不同尺寸和形状的刀具。采集系统捕获的图像随后经过去噪和对比度增强操作进行预处理。之后采用大津阈值法和马尔可夫随机场图像分割法提取刀具前刀面、后刀面和刀尖上的失效区域。最终,通过钛合金加工实验验证了所提出的图像采集系统和图像处理方法的可行性。所提出的图像采集系统和图像处理方法不仅能对整体螺旋立铣刀进行高质量检测,还能轻松转换用于检测其他结构复杂的切削系统。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f87b/8510400/e747a4c990f9/materials-14-05690-g001.jpg

相似文献

1
Wear and Breakage Detection of Integral Spiral End Milling Cutters Based on Machine Vision.
Materials (Basel). 2021 Sep 30;14(19):5690. doi: 10.3390/ma14195690.
2
Study on In-Situ Tool Wear Detection during Micro End Milling Based on Machine Vision.
Micromachines (Basel). 2022 Dec 30;14(1):100. doi: 10.3390/mi14010100.
4
The Surface Integrity of Titanium Alloy When Using Micro-Textured Ball-End Milling Cutters.
Micromachines (Basel). 2018 Dec 29;10(1):21. doi: 10.3390/mi10010021.
5
Temperature Field of Tool Engaged Cutting Zone for Milling of Titanium Alloy with Ball-End Milling.
Micromachines (Basel). 2018 Dec 18;9(12):672. doi: 10.3390/mi9120672.
6
Multivariate time series data of milling processes with varying tool wear and machine tools.
Data Brief. 2023 Sep 14;50:109574. doi: 10.1016/j.dib.2023.109574. eCollection 2023 Oct.

本文引用的文献

2
Stochastic relaxation, gibbs distributions, and the bayesian restoration of images.
IEEE Trans Pattern Anal Mach Intell. 1984 Jun;6(6):721-41. doi: 10.1109/tpami.1984.4767596.
3
A simple unsupervised MRF model based image segmentation approach.
IEEE Trans Image Process. 2000;9(5):801-12. doi: 10.1109/83.841527.
4
Fast impulsive noise removal.
IEEE Trans Image Process. 2001;10(1):173-9. doi: 10.1109/83.892455.
5
A tree-structured Markov random field model for Bayesian image segmentation.
IEEE Trans Image Process. 2003;12(10):1259-73. doi: 10.1109/TIP.2003.817257.
6
Current methods in medical image segmentation.
Annu Rev Biomed Eng. 2000;2:315-37. doi: 10.1146/annurev.bioeng.2.1.315.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验