Pan Ling-Yu, Ding Yu-Feng, Liu Huang-Qing, Cai Meng-Qiu
Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, China.
Phys Chem Chem Phys. 2021 Oct 27;23(41):23703-23710. doi: 10.1039/d1cp03375a.
The three-dimensional (3D) organic-inorganic halide perovskite MAPbI has excellent light-harvesting properties but is unstable. However, the newly synthesized two-dimensional (2D) all-inorganic Ruddlesden-Popper (RP) perovskite CsPbICl has superior stability but adverse photoelectric properties. Therefore, constructing a 2D CsPbICl/3D MAPbI heterostructure is expected to combine the superstability of the 2D material and the high efficiency of the 3D one. The photoelectric properties and charge transfer of 2D CsPbICl/3D MAPbI heterostructures are investigated using density functional theory, where MAPbI has two kinds of contacting interfaces, , MAI and PbI interfaces. The band gaps of 2D/MAI and 2D/PbI heterostructures are 1.52 eV and 1.40 eV, smaller than those of the free-standing materials (2D ∼ 2.50 eV, MAI ∼ 1.77 eV, and PbI ∼ 1.73 eV), which can broaden the light absorption spectrum. Moreover, the 2D/3D heterostructures are typical type-II heterostructures, which is beneficial to facilitate the separation of carriers for increasing the photoelectric conversion. Interestingly, due to the work function difference (2D ∼ 4.97 eV, MAI ∼ 3.57 eV, and PbI ∼ 5.49 eV), the charge transfer directions of the 2D/MAI and 2D/PbI heterostructures are completely opposite, which shows that interface engineering to impose a consistent interface termination is needed to obtain good performance for solar cells. These results demonstrate that constructing 2D CsPbICl and 3D MAPbI heterostructures by interfacial engineering is a potential strategy to improve the performance of perovskite solar cells (PSCs).
三维(3D)有机-无机卤化物钙钛矿MAPbI具有优异的光捕获性能,但不稳定。然而,新合成的二维(2D)全无机Ruddlesden-Popper(RP)钙钛矿CsPbICl具有优异的稳定性,但光电性能较差。因此,构建二维CsPbICl/三维MAPbI异质结构有望结合二维材料的超稳定性和三维材料的高效率。利用密度泛函理论研究了二维CsPbICl/三维MAPbI异质结构的光电性能和电荷转移,其中MAPbI有两种接触界面,即MAI和PbI界面。二维/MAI和二维/PbI异质结构的带隙分别为1.52 eV和1.40 eV,小于独立材料的带隙(二维约2.50 eV,MAI约1.77 eV,PbI约1.73 eV),这可以拓宽光吸收光谱。此外,二维/三维异质结构是典型的II型异质结构,有利于促进载流子的分离以提高光电转换效率。有趣的是,由于功函数差异(二维约4.97 eV,MAI约3.57 eV,PbI约5.49 eV),二维/MAI和二维/PbI异质结构的电荷转移方向完全相反,这表明需要进行界面工程以施加一致的界面终止来获得良好的太阳能电池性能。这些结果表明,通过界面工程构建二维CsPbICl和三维MAPbI异质结构是提高钙钛矿太阳能电池(PSC)性能的潜在策略。