Suppr超能文献

猪源胶原蛋白增强软骨生成技术治疗膝关节软骨缺损

Porcine-Derived Collagen-Augmented Chondrogenesis Technique for Treating Knee Cartilage Defects.

作者信息

Kim Man Soo, Koh In Jun, In Yong

机构信息

Department of Orthopaedic Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.

Department of Orthopaedic Surgery, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.

出版信息

JBJS Essent Surg Tech. 2021 Jul 14;11(3). doi: 10.2106/JBJS.ST.20.00028. eCollection 2021 Jul-Sep.

Abstract

UNLABELLED

Articular cartilage is virtually incapable of self-healing in the event of a defect. Microfracture is the most frequently used bone marrow stimulation technique, but there is the limitation of unpredictable quality of the cartilage repair following bone marrow stimulation. To resolve the shortcomings of the microfracture technique, various reinforcing technologies have been developed, including the porcine-derived collagen-augmented chondrogenesis technique (C-ACT). The collagen gel utilized in that procedure is a product called CartiFill (Sewon Cellontech), made from highly purified pig-derived type-I collagen. It has been modified into an atelocollagen, by removing telopeptides, to virtually eliminate the risk of rejection. The collagen matrix provides not only a 3-dimensional structure for cartilage differentiation, but also mechanical support.

DESCRIPTION

Porcine-derived C-ACT is initiated by creating a mixture of atelocollagen, thrombin, and fibrinogen. First, thrombin is mixed with atelocollagen and placed in one arm of an assembled Y-shaped syringe, and fibrinogen is placed in the other arm. The articular cartilage defect site is confirmed in a routine arthroscopic procedure. The articular margin is debrided, and the calcified lesion is cleanly removed. Then, microfractures are created. After creating a more extended incision at the anteromedial portal, the microfracture site is prepared by removing moisture. The prepared atelocollagen mixture is applied to the defect site as a single layer, although a second layer can be formed 1 to 2 minutes later. After 5 minutes, the stability is verified by range of motion of the knee.Indications for this procedure include (1) cartilage defects in the knee, including knee osteoarthritis and knee traumatic arthritis; (2) knee osteoarthritis with a Kellgren-Lawrence grade of 3 or less; (3) hip-knee-ankle malalignment of <5° or a deformity that is able to be surgically corrected; and (4) knee stability, or instability that is able to be surgically corrected.Contraindications for this procedure include (1) patient or family history of autoimmune disease, (2) history of anaphylactic reaction, (3) history of hypersensitivity to an implant, (4) history of allergy to porcine or bovine protein, and (5) inflammatory arthritis such as rheumatoid and gouty arthritis.C-ACT is a procedure for cartilage repair, and the effects of this procedure can be limited in cases with a deep subchondral bone defect; however, there is no limit to the size of the cartilage defect in terms of patient selection for C-ACT.

ALTERNATIVES

There are several alternatives to C-ACT, ranging from the simple microfracture technique to autologous chondrocyte implantation, matrix-induced autologous chondrocyte implantation, autologous matrix-induced chondrogenesis, osteochondral autograft transplantation, and stem cell therapy. There are various ways to recover from an articular cartilage defect, but C-ACT does not require a 2-stage technique, as is necessary with both autologous chondrocyte implantation procedures. Therefore, C-ACT has the advantages of ease of operation and being a single-stage procedure.

RATIONALE

C-ACT can be classified as an upgraded version of microfracture, which is the most common treatment method for articular cartilage defects. With the microfracture technique, repaired cartilage is limited to fibrous cartilage and does not include hyaline cartilage. However, a recent study reported that C-ACT exhibited a superior quality of repaired cartilage compared with microfracture.

EXPECTED OUTCOMES

Previous studies have reported favorable results with the use of C-ACT. Kim et al. compared atelocollagen augmentation with microfracture alone in patients undergoing medial opening wedge high tibial osteotomy for the treatment of medial compartment osteoarthritis. Although there was no clinical difference between the 2 groups, the Magnetic Resonance Observation of Cartilage Repair Tissue (MOCART) score and the International Cartilage Repair Society II score were superior in the atelocollagen augmentation group. In addition, the microfracture group formed fibrous-like cartilage compared with the hyaline-like cartilage created in the atelocollagen augmentation group. A recent multicenter randomized study compared the use of C-ACT and microfracture and found that C-ACT exhibited significantly better results in several MOCART subscores and quantitative T2 mapping, indicating a histologically superior form of repaired cartilage compared with microfracture. According to recent research, microfracture is superior to autologous chondrocyte implantation in terms of cost-effectiveness. Similar results appear to be applicable to C-ACT. C-ACT requires an additional $1,300 for material costs; however, C-ACT showed better cartilage regeneration on magnetic resonance imagining and histology, and higher rate of patients meeting the 20%-improvement rate in visual analogue scale pain scores at 24 months postoperatively compared with microfracture. Long-term studies will be needed to assess whether histological superiority of C-ACT is reflected in meaningful improvements to clinical outcomes.

IMPORTANT TIPS

Debride all of the damaged cartilage to subchondral bone and remove the calcified layer without interfering with tissue repairTake special care when creating the atelocollagen mixture to ensure that it is accurately manufacturedDry the defect site with use of suction or gauze to aid in atelocollagen adhesion when applying atelocollagen.

摘要

未标注

关节软骨一旦出现缺损,几乎无法自我修复。微骨折是最常用的骨髓刺激技术,但骨髓刺激后软骨修复质量不可预测,存在局限性。为解决微骨折技术的缺点,已开发出多种强化技术,包括猪源胶原蛋白增强软骨形成技术(C-ACT)。该手术中使用的胶原蛋白凝胶是一种名为CartiFill(世源细胞科技)的产品,由高度纯化的猪源I型胶原蛋白制成。通过去除端肽,它已被改性为去端肽胶原蛋白,几乎消除了排斥风险。胶原蛋白基质不仅为软骨分化提供三维结构,还提供机械支撑。

描述

猪源C-ACT通过制备去端肽胶原蛋白、凝血酶和纤维蛋白原的混合物来启动。首先,将凝血酶与去端肽胶原蛋白混合,置于组装好的Y形注射器的一个臂中,纤维蛋白原置于另一个臂中。在常规关节镜手术中确认关节软骨缺损部位。清理关节边缘,彻底清除钙化病变。然后,制造微骨折。在扩大前内侧入路切口后,通过去除水分来准备微骨折部位。将制备好的去端肽胶原蛋白混合物作为单层应用于缺损部位,不过1至2分钟后可形成第二层。5分钟后,通过膝关节活动范围验证稳定性。该手术的适应症包括:(1)膝关节软骨缺损,包括膝骨关节炎和膝创伤性关节炎;(2)Kellgren-Lawrence分级为3级或以下的膝骨关节炎;(3)髋-膝-踝对线不良<5°或可通过手术矫正的畸形;(4)膝关节稳定性,或可通过手术矫正的不稳定。该手术的禁忌症包括:(1)患者或家族自身免疫性疾病史;(2)过敏反应史;(3)对植入物过敏史;(4)对猪或牛蛋白过敏史;(5)类风湿性和痛风性关节炎等炎症性关节炎。C-ACT是一种软骨修复手术,在存在深部软骨下骨缺损的情况下,该手术效果可能有限;然而,就C-ACT的患者选择而言,软骨缺损大小并无限制。

替代方法

C-ACT有多种替代方法,从简单的微骨折技术到自体软骨细胞植入、基质诱导自体软骨细胞植入、自体基质诱导软骨形成、骨软骨自体移植和干细胞治疗。从关节软骨缺损恢复有多种方法,但C-ACT不需要像自体软骨细胞植入手术那样的两阶段技术。因此,C-ACT具有操作简便和单阶段手术的优点。

原理

C-ACT可归类为微骨折的升级版,微骨折是关节软骨缺损最常见的治疗方法。采用微骨折技术,修复的软骨仅限于纤维软骨,不包括透明软骨。然而,最近一项研究报告称,与微骨折相比,C-ACT修复的软骨质量更优。

预期结果

先前的研究报告了使用C-ACT的良好结果。Kim等人在接受内侧开放楔形高位胫骨截骨术治疗内侧间室骨关节炎的患者中,比较了单纯去端肽胶原蛋白增强与微骨折。虽然两组之间没有临床差异,但去端肽胶原蛋白增强组的磁共振软骨修复组织观察(MOCART)评分和国际软骨修复协会II评分更高。此外,与去端肽胶原蛋白增强组形成的透明样软骨相比,微骨折组形成的是纤维样软骨。最近一项多中心随机研究比较了C-ACT和微骨折的使用情况,发现C-ACT在几个MOCART子评分和定量T2成像方面表现出明显更好的结果,表明与微骨折相比,其修复软骨的组织学形式更优。根据最近的研究,就成本效益而言,微骨折优于自体软骨细胞植入。类似的结果似乎也适用于C-ACT。C-ACT需要额外1300美元的材料成本;然而,与微骨折相比,C-ACT在磁共振成像和组织学上显示出更好的软骨再生,且术后24个月视觉模拟量表疼痛评分改善率达到20%的患者比例更高。需要进行长期研究来评估C-ACT的组织学优势是否能转化为有意义的临床结果改善。

重要提示

将所有受损软骨清创至软骨下骨,清除钙化层,同时不干扰组织修复。制备去端肽胶原蛋白混合物时要格外小心,确保准确制备。应用去端肽胶原蛋白时,使用吸引器或纱布干燥缺损部位,以帮助去端肽胶原蛋白黏附。

相似文献

1
Porcine-Derived Collagen-Augmented Chondrogenesis Technique for Treating Knee Cartilage Defects.
JBJS Essent Surg Tech. 2021 Jul 14;11(3). doi: 10.2106/JBJS.ST.20.00028. eCollection 2021 Jul-Sep.
7
Osteochondral Allograft Transplantation for Focal Cartilage Defects of the Femoral Condyles.
JBJS Essent Surg Tech. 2022 Sep 22;12(3):e21.00037. doi: 10.2106/JBJS.ST.21.00037. eCollection 2022 Jul-Sep.
8
Harvest and Application of Bone Marrow Aspirate Concentrate to Address Acetabular Chondral Damage During Hip Arthroscopy.
JBJS Essent Surg Tech. 2023 May 24;13(2). doi: 10.2106/JBJS.ST.22.00010. eCollection 2023 Apr-Jun.

引用本文的文献

1
Microfracture Versus a Porcine-Derived Collagen-Augmented Chondrogenesis Technique for Treating Knee Cartilage Defects: Results at Midterm Follow-up.
Orthop J Sports Med. 2024 Nov 7;12(11):23259671241292093. doi: 10.1177/23259671241292093. eCollection 2024 Nov.
2
A review of advanced hydrogels for cartilage tissue engineering.
Front Bioeng Biotechnol. 2024 Feb 8;12:1340893. doi: 10.3389/fbioe.2024.1340893. eCollection 2024.

本文引用的文献

3
Autologous Chondrocyte Implantation Versus Microfracture in the Knee: A Meta-analysis and Systematic Review.
Arthroscopy. 2020 Jan;36(1):289-303. doi: 10.1016/j.arthro.2019.06.033. Epub 2019 Nov 7.
4
Autologous Matrix-Induced Chondrogenesis: A Systematic Review of the Clinical Evidence.
Am J Sports Med. 2019 Jan;47(1):222-231. doi: 10.1177/0363546517740575. Epub 2017 Nov 21.
5
Microfracture is more cost-effective than autologous chondrocyte implantation: a review of level 1 and level 2 studies with 5 year follow-up.
Knee Surg Sports Traumatol Arthrosc. 2018 Apr;26(4):1044-1052. doi: 10.1007/s00167-017-4802-5. Epub 2017 Nov 11.
7
Osteochondral Autograft Transplantation: A Review of the Surgical Technique and Outcomes.
Sports Med Arthrosc Rev. 2016 Jun;24(2):74-8. doi: 10.1097/JSA.0000000000000099.
8
Repair tissue quality after arthroscopic autologous collagen-induced chondrogenesis (ACIC) assessed via T2* mapping.
Skeletal Radiol. 2013 Dec;42(12):1657-64. doi: 10.1007/s00256-013-1708-2. Epub 2013 Aug 29.
10
Chondral resurfacing of articular cartilage defects in the knee with the microfracture technique. Surgical technique.
J Bone Joint Surg Am. 2006 Sep;88 Suppl 1 Pt 2:294-304. doi: 10.2106/JBJS.F.00292.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验