Austerberry James, Edwards John, Eyes Tim, Derrick Jeremy P
School of Biological Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester M13 9PT, United Kingdom.
Mol Pharm. 2021 Nov 1;18(11):4131-4139. doi: 10.1021/acs.molpharmaceut.1c00543. Epub 2021 Oct 18.
Methods to optimize the solution behavior of therapeutic proteins are frequently time-consuming, provide limited information, and often use milligram quantities of material. Here, we present a simple, versatile method that provides valuable information to guide the identification and comparison of formulation conditions for, in principle, any biopharmaceutical drug. The subject protein is incubated with a designed synthetic peptide microarray; the extent of binding to each peptide is dependent on the solution conditions. The array is washed, and the adhesion of the subject protein is detected using a secondary antibody. We exemplify the method using a well-characterized human single-chain Fv and a selection of human monoclonal antibodies. Correlations of peptide adhesion profiles can be used to establish quantitative relationships between different solution conditions, allowing subgrouping into dendrograms. Multidimensional reduction methods, such as t-distributed stochastic neighbor embedding, can be applied to compare how different monoclonals vary in their adhesion properties under different solution conditions. Finally, we screened peptide binding profiles using a selection of monoclonal antibodies for which a range of biophysical measurements were available under specified buffer conditions. We used a neural network method to train the data against aggregation temperature, , percentage recovery after incubation at 25 °C, and melting temperature. The results demonstrate that peptide binding profiles can indeed be effectively trained on these indicators of protein stability and self-association in solution. The method opens up multiple possibilities for the application of machine learning methods in therapeutic protein formulation.
优化治疗性蛋白质溶液行为的方法通常耗时、提供的信息有限,且常常需要毫克级的材料量。在此,我们提出一种简单、通用的方法,该方法能提供有价值的信息,以指导原则上任何生物制药药物制剂条件的鉴定和比较。将目标蛋白质与设计好的合成肽微阵列一起孵育;与每种肽的结合程度取决于溶液条件。清洗该阵列,并用二抗检测目标蛋白质的黏附情况。我们以一种特征明确的人单链Fv和一系列人单克隆抗体为例对该方法进行了说明。肽黏附图谱的相关性可用于建立不同溶液条件之间的定量关系,从而进行聚类分析。可以应用多维降维方法,如t分布随机邻域嵌入,来比较不同单克隆抗体在不同溶液条件下黏附特性的差异。最后,我们使用一系列在特定缓冲条件下可获得多种生物物理测量数据的单克隆抗体筛选肽结合图谱。我们使用神经网络方法针对聚集温度、25℃孵育后的回收率百分比以及解链温度对数据进行训练。结果表明,肽结合图谱确实可以在这些蛋白质在溶液中的稳定性和自缔合指标上得到有效训练。该方法为机器学习方法在治疗性蛋白质制剂中的应用开辟了多种可能性。