Suppr超能文献

破骨细胞通过 DNA 去甲基化适应低氧应激。

Osteoclasts adapt to physioxia perturbation through DNA demethylation.

机构信息

Laboratory of Cell Biology and Metabolic Biochemistry, Department of Medical Life Systems, Graduate School of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan.

Department of Immunology and Cell Biology, WPI-Immunology Frontier Research Center, Osaka University, Suita, Japan.

出版信息

EMBO Rep. 2021 Dec 6;22(12):e53035. doi: 10.15252/embr.202153035. Epub 2021 Oct 18.

Abstract

Oxygen plays an important role in diverse biological processes. However, since quantitation of the partial pressure of cellular oxygen in vivo is challenging, the extent of oxygen perturbation in situ and its cellular response remains underexplored. Using two-photon phosphorescence lifetime imaging microscopy, we determine the physiological range of oxygen tension in osteoclasts of live mice. We find that oxygen tension ranges from 17.4 to 36.4 mmHg, under hypoxic and normoxic conditions, respectively. Physiological normoxia thus corresponds to 5% and hypoxia to 2% oxygen in osteoclasts. Hypoxia in this range severely limits osteoclastogenesis, independent of energy metabolism and hypoxia-inducible factor activity. We observe that hypoxia decreases ten-eleven translocation (TET) activity. Tet2/3 cooperatively induces Prdm1 expression via oxygen-dependent DNA demethylation, which in turn activates NFATc1 required for osteoclastogenesis. Taken together, our results reveal that TET enzymes, acting as functional oxygen sensors, regulate osteoclastogenesis within the physiological range of oxygen tension, thus opening new avenues for research on in vivo response to oxygen perturbation.

摘要

氧气在多种生物过程中起着重要作用。然而,由于活体细胞氧分压的定量具有挑战性,因此原位氧干扰的程度及其细胞反应仍未得到充分探索。我们使用双光子磷光寿命成像显微镜,确定了活体小鼠破骨细胞中氧张力的生理范围。我们发现,在缺氧和常氧条件下,氧张力分别在 17.4 至 36.4mmHg 之间。因此,生理常氧对应于破骨细胞中的 5%氧气和缺氧对应于 2%氧气。在此范围内的缺氧严重限制了破骨细胞的生成,而与能量代谢和缺氧诱导因子活性无关。我们观察到,缺氧会降低 ten-eleven translocation (TET) 活性。Tet2/3 通过氧依赖性 DNA 去甲基化协同诱导 Prdm1 的表达,进而激活破骨细胞生成所需的 NFATc1。总之,我们的结果表明,TET 酶作为功能氧传感器,在氧张力的生理范围内调节破骨细胞的生成,从而为研究体内对氧干扰的反应开辟了新的途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/192f/8647016/ce7ce51a51ad/EMBR-22-e53035-g003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验