Suppr超能文献

通过甲烷古菌中的磷酸盐来调节基因表达。

Tuning Gene Expression by Phosphate in the Methanogenic Archaeon .

机构信息

Department of Microbiology, University of Georgia, Athens, Georgia 30602, United States.

Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030, United States.

出版信息

ACS Synth Biol. 2021 Nov 19;10(11):3028-3039. doi: 10.1021/acssynbio.1c00322. Epub 2021 Oct 19.

Abstract

is a rapidly growing, hydrogenotrophic, and genetically tractable methanogen with unique capabilities to convert formate and CO to CH. The existence of genome-scale metabolic models and an established, robust system for both large-scale and continuous cultivation make it amenable for industrial applications. However, the lack of molecular tools for differential gene expression has hindered its application as a microbial cell factory to produce biocatalysts and biochemicals. In this study, a library of differentially regulated promoters was designed and characterized based on the promoter, which responds to the inorganic phosphate concentration in the growth medium. Gene expression increases by 4- to 6-fold when the medium phosphate drops to growth-limiting concentrations. Hence, this regulated system decouples growth from heterologous gene expression without the need for adding an inducer. The minimal promoter is identified and contains a conserved AT-rich region, a factor B recognition element, and a TATA box for phosphate-dependent regulation. Rational changes to the factor B recognition element and start codon had no significant impact on expression; however, changes to the transcription start site and the 5' untranslated region resulted in the differential protein production with regulation remaining intact. Compared to a previous expression system based upon the histone promoter, this regulated expression system resulted in significant improvements in the expression of a key methanogenic enzyme complex, methyl-coenzyme M reductase, and the potentially toxic arginine methyltransferase MmpX.

摘要

是一种生长迅速、产氢、遗传上易于操作的产甲烷菌,具有将甲酸盐和 CO 转化为 CH 的独特能力。该菌具有基因组规模的代谢模型和成熟的、可用于大规模连续培养的系统,这使其适用于工业应用。然而,缺乏用于差异基因表达的分子工具,限制了其作为微生物细胞工厂生产生物催化剂和生物化学物质的应用。在这项研究中,基于对无机磷酸盐浓度在生长培养基中响应的 启动子,设计并表征了一个差异调控启动子文库。当培养基中的磷酸盐下降到生长限制浓度时,基因表达会增加 4 到 6 倍。因此,这个调控系统无需添加诱导剂即可将生长与异源基因表达解耦。鉴定出最小的 启动子,并包含一个保守的富含 AT 的区域、因子 B 识别元件和一个 TATA 盒,用于磷酸盐依赖性调控。因子 B 识别元件和起始密码子的合理改变对表达没有显著影响;然而,转录起始位点和 5'非翻译区的改变导致了差异蛋白的产生,而调控仍然完整。与以前基于组蛋白启动子的表达系统相比,这个调控表达系统显著提高了关键产甲烷酶复合物甲基辅酶 M 还原酶和潜在毒性的精氨酸甲基转移酶 MmpX 的表达。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验