Proteome Dynamics, Max Delbrück Center for Molecular Medicine, Berlin, Germany; Charité-Universitätsmedizin Berlin, Berlin, Germany.
Proteome Dynamics, Max Delbrück Center for Molecular Medicine, Berlin, Germany; Charité-Universitätsmedizin Berlin, Berlin, Germany.
Mol Cell Proteomics. 2021;20:100165. doi: 10.1016/j.mcpro.2021.100165. Epub 2021 Oct 18.
Targeted proteomics via selected reaction monitoring (SRM) or parallel reaction monitoring (PRM) enables fast and sensitive detection of a preselected set of target peptides. However, the number of peptides that can be monitored in conventional targeting methods is usually rather small. Recently, a series of methods has been described that employ intelligent acquisition strategies to increase the efficiency of mass spectrometers to detect target peptides. These methods are based on one of two strategies. First, retention time adjustment-based methods enable intelligent scheduling of target peptide retention times. These include Picky, iRT, as well as spike-in free real-time adjustment methods such as MaxQuant.Live. Second, in spike-in triggered acquisition methods such as SureQuant, Pseudo-PRM, TOMAHAQ, and Scout-MRM, targeted scans are initiated by abundant labeled synthetic peptides added to samples before the run. Both strategies enable the mass spectrometer to better focus data acquisition time on target peptides. This either enables more sensitive detection or a higher number of targets per run. Here, we provide an overview of available advanced targeting methods and highlight their intrinsic strengths and weaknesses and compatibility with specific experimental setups. Our goal is to provide a basic introduction to advanced targeting methods for people starting to work in this field.
通过选择反应监测 (SRM) 或平行反应监测 (PRM) 进行靶向蛋白质组学可以快速灵敏地检测预先选定的一组目标肽。然而,在传统的靶向方法中可以监测的肽的数量通常相当有限。最近,已经描述了一系列采用智能采集策略的方法,这些方法可以提高质谱仪检测目标肽的效率。这些方法基于两种策略之一。首先,基于保留时间调整的方法能够智能调度目标肽的保留时间。这些方法包括 Picky、iRT 以及无内标实时调整方法,如 MaxQuant.Live。其次,在 Spike-in 触发采集方法中,如 SureQuant、Pseudo-PRM、TOMAHAQ 和 Scout-MRM,靶向扫描由在运行前添加到样品中的大量标记合成肽引发。这两种策略都使质谱仪能够更好地将数据采集时间集中在目标肽上。这要么实现了更灵敏的检测,要么在每次运行中实现了更多的目标。在这里,我们提供了可用的高级靶向方法的概述,并强调了它们的内在优势和劣势以及与特定实验设置的兼容性。我们的目标是为刚开始从事该领域的人提供高级靶向方法的基本介绍。