Suppr超能文献

白内障手术视频中瞳孔反应的自动检测。

Automatic detection of pupil reactions in cataract surgery videos.

机构信息

Institute of Information Technology, Klagenfurt University, Klagenfurt, Austria.

Department of Ophthalmology, Klinikum Klagenfurt, Klagenfurt, Austria.

出版信息

PLoS One. 2021 Oct 21;16(10):e0258390. doi: 10.1371/journal.pone.0258390. eCollection 2021.

Abstract

In the light of an increased use of premium intraocular lenses (IOL), such as EDOF IOLs, multifocal IOLs or toric IOLs even minor intraoperative complications such as decentrations or an IOL tilt, will hamper the visual performance of these IOLs. Thus, the post-operative analysis of cataract surgeries to detect even minor intraoperative deviations that might explain a lack of a post-operative success becomes more and more important. Up-to-now surgical videos are evaluated by just looking at a very limited number of intraoperative data sets, or as done in studies evaluating the pupil changes that occur during surgeries, in a small number intraoperative picture only. A continuous measurement of pupil changes over the whole surgery, that would achieve clinically more relevant data, has not yet been described. Therefore, the automatic retrieval of such events may be a great support for a post-operative analysis. This would be especially true if large data files could be evaluated automatically. In this work, we automatically detect pupil reactions in cataract surgery videos. We employ a Mask R-CNN architecture as a segmentation algorithm to segment the pupil and iris with pixel-based accuracy and then track their sizes across the entire video. We can detect pupil reactions with a harmonic mean (H) of Recall, Precision, and Ground Truth Coverage Rate (GTCR) of 60.9% and average prediction length (PL) of 18.93 seconds. However, we consider the best configuration for practical use the one with the H value of 59.4% and PL of 10.2 seconds, which is much shorter. We further investigate the generalization ability of this method on a slightly different dataset without retraining the model. In this evaluation, we achieve the H value of 49.3% with the PL of 18.15 seconds.

摘要

鉴于 premium (高端) 人工晶状体(IOL)的使用越来越多,例如 EDOF IOL、多焦点 IOL 或散光 IOL,即使是轻微的术中并发症,如偏心或 IOL 倾斜,也会影响这些 IOL 的视觉性能。因此,对白内障手术进行术后分析,以检测可能导致术后失败的微小术中偏差变得越来越重要。到目前为止,手术视频的评估只是通过查看非常有限的术中数据集来完成,或者像在评估手术过程中瞳孔变化的研究中那样,只查看少数术中图片来完成。尚未描述对整个手术过程中瞳孔变化进行连续测量,从而获得更具临床意义的数据。因此,自动检索这些事件可能是术后分析的有力支持。如果可以自动评估大型数据文件,情况尤其如此。在这项工作中,我们自动检测白内障手术视频中的瞳孔反应。我们使用 Mask R-CNN 架构作为分割算法,以像素为精度分割瞳孔和虹膜,然后跟踪它们在整个视频中的大小。我们可以检测到瞳孔反应,其召回率(Recall)、精度(Precision)和真实覆盖率(GTCR)的调和平均值(H)为 60.9%,平均预测长度(PL)为 18.93 秒。然而,我们认为对于实际使用来说,最佳配置是 H 值为 59.4%且 PL 为 10.2 秒的配置,因为它更短。我们进一步在没有重新训练模型的情况下,在一个略有不同的数据集上研究该方法的泛化能力。在这种评估中,我们达到了 H 值为 49.3%,PL 为 18.15 秒。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7187/8530330/5bca6b2f27e4/pone.0258390.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验