Abraham Vibin, Mayhall Nicholas J
Department of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24060, United States.
J Phys Chem Lett. 2021 Nov 4;12(43):10505-10514. doi: 10.1021/acs.jpclett.1c03217. Epub 2021 Oct 22.
Understanding the separation of the correlated triplet pair state (TT) intermediate is critical for leveraging singlet fission to improve solar cell efficiency. This separation mechanism is dominated by two key interactions: (i) the exchange interaction () between the triplets which leads to the spin splitting of the biexciton state into (TT),(TT) and (TT) states, and (ii) the triplet-triplet energy transfer integral () which enables the formation of the spatially separated (but still spin entangled) state (T···T). We develop a simple ab initio technique to compute both the biexciton exchange () and biexciton transfer coupling. Our key findings reveal new conditions for successful correlated triplet pair state dissociation. The biexciton exchange interaction needs to be ferromagnetic or negligible to the triplet energy transfer for favorable dissociation. We also explore the effect of chromophore packing to reveal geometries where these conditions are achieved for tetracene.
理解相关三重态对态(TT)中间体的分离对于利用单线态裂变提高太阳能电池效率至关重要。这种分离机制由两个关键相互作用主导:(i)三重态之间的交换相互作用(),它导致双激子态的自旋分裂为(TT)、(TT)和(TT)态;(ii)三重态 - 三重态能量转移积分(),它使得形成空间分离(但仍自旋纠缠)的态(T···T)。我们开发了一种简单的从头算技术来计算双激子交换()和双激子转移耦合。我们的主要发现揭示了相关三重态对态成功解离的新条件。双激子交换相互作用需要是铁磁性的,或者与三重态能量转移相比可忽略不计,以便有利于解离。我们还研究了发色团堆积的影响,以揭示对于并四苯实现这些条件的几何结构。