Okamoto Shogo
Department of Computer Sciences, Tokyo Metropolitan Universities, Hino, Tokyo 191-0065, Japan.
Foods. 2021 Oct 15;10(10):2472. doi: 10.3390/foods10102472.
In the last decade, temporal dominance of sensations (TDS) methods have proven to be potent approaches in the field of food sciences. Accordingly, thus far, methods for analyzing TDS curves, which are the major outputs of TDS methods, have been developed. This study proposes a method of bootstrap resampling for TDS tasks. The proposed method enables the production of random TDS curves to estimate the uncertainties, that is, the 95% confidence interval and standard error of the curves. Based on Monte Carlo simulation studies, the estimated uncertainties are considered valid and match those estimated by approximated normal distributions with the number of independent TDS tasks or samples being 50-100 or greater. The proposed resampling method enables researchers to apply statistical analyses and machine-learning approaches that require a large sample size of TDS curves.
在过去十年中,感官时间主导性(TDS)方法已被证明是食品科学领域的有效方法。因此,到目前为止,已经开发出了用于分析TDS曲线(TDS方法的主要输出结果)的方法。本研究提出了一种用于TDS任务的自助重采样方法。该方法能够生成随机TDS曲线以估计不确定性,即曲线的95%置信区间和标准误差。基于蒙特卡洛模拟研究,估计出的不确定性被认为是有效的,并且当独立TDS任务或样本数量为50 - 100或更多时,与通过近似正态分布估计出的结果相匹配。所提出的重采样方法使研究人员能够应用需要大量TDS曲线样本的统计分析和机器学习方法。