Suppr超能文献

用于估计高斯混合分布无线信道的变分稀疏贝叶斯学习

Variational Sparse Bayesian Learning for Estimation of Gaussian Mixture Distributed Wireless Channels.

作者信息

Kong Lingjin, Zhang Xiaoying, Zhao Haitao, Wei Jibo

机构信息

School of Electronic Science and Engineering, National University of Defense Technology, Changsha 410073, China.

出版信息

Entropy (Basel). 2021 Sep 28;23(10):1268. doi: 10.3390/e23101268.

Abstract

In this paper, variational sparse Bayesian learning is utilized to estimate the multipath parameters for wireless channels. Due to its flexibility to fit any probability density function (PDF), the Gaussian mixture model (GMM) is introduced to represent the complicated fading phenomena in various communication scenarios. First, the expectation-maximization (EM) algorithm is applied to the parameter initialization. Then, the variational update scheme is proposed and implemented for the channel parameters' posterior PDF approximation. Finally, in order to prevent the derived channel model from overfitting, an effective pruning criterion is designed to eliminate the virtual multipath components. The numerical results show that the proposed method outperforms the variational Bayesian scheme with Gaussian prior in terms of root mean squared error (RMSE) and selection accuracy of model order.

摘要

本文利用变分稀疏贝叶斯学习来估计无线信道的多径参数。由于高斯混合模型(GMM)能够灵活拟合任何概率密度函数(PDF),因此引入该模型来表征各种通信场景中复杂的衰落现象。首先,应用期望最大化(EM)算法进行参数初始化。然后,提出并实现变分更新方案,用于逼近信道参数的后验PDF。最后,为防止推导得到的信道模型出现过拟合,设计了一种有效的剪枝准则来消除虚拟多径分量。数值结果表明,在均方根误差(RMSE)和模型阶数选择精度方面,所提方法优于具有高斯先验的变分贝叶斯方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e823/8534843/b80449a6b9e7/entropy-23-01268-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验