Suppr超能文献

丝状真菌对不同氧化态锰氧化物的生物浸出

Bioleaching of Manganese Oxides at Different Oxidation States by Filamentous Fungus .

作者信息

Farkas Bence, Bujdoš Marek, Polák Filip, Matulová Michaela, Cesnek Martin, Duborská Eva, Zvěřina Ondřej, Kim Hyunjung, Danko Martin, Kisová Zuzana, Matúš Peter, Urík Martin

机构信息

Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská Dolina, Ilkovičova 6, 842 15 Bratislava, Slovakia.

Department of Soil Science and Soil Protection, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Praha-Suchdol, Czech Republic.

出版信息

J Fungi (Basel). 2021 Sep 28;7(10):808. doi: 10.3390/jof7100808.

Abstract

This work aimed to examine the bioleaching of manganese oxides at various oxidation states (MnO, MnO·MnO, MnO and MnO) by a strain of the filamentous fungus , a frequent soil representative. Our results showed that the fungus effectively disintegrated the crystal structure of selected mineral manganese phases. Thereby, during a 31-day static incubation of oxides in the presence of fungus, manganese was bioextracted into the culture medium and, in some cases, transformed into a new biogenic mineral. The latter resulted from the precipitation of extracted manganese with biogenic oxalate. The Mn(II,III)-oxide was the most susceptible to fungal biodeterioration, and up to 26% of the manganese content in oxide was extracted by the fungus into the medium. The detected variabilities in biogenic oxalate and gluconate accumulation in the medium are also discussed regarding the fungal sensitivity to manganese. These suggest an alternative pathway of manganese oxides' biodeterioration via a reductive dissolution. There, the oxalate metabolites are consumed as the reductive agents. Our results highlight the significance of fungal activity in manganese mobilization and transformation. The soil fungi should be considered an important geoactive agent that affects the stability of natural geochemical barriers.

摘要

这项工作旨在研究一种丝状真菌(一种常见的土壤代表性菌株)对各种氧化态(MnO、MnO·MnO、MnO 和 MnO)的锰氧化物的生物浸出作用。我们的结果表明,该真菌有效地分解了所选矿物锰相的晶体结构。因此,在真菌存在的情况下对氧化物进行 31 天的静态培养期间,锰被生物提取到培养基中,并且在某些情况下,转化为一种新的生物成因矿物。后者是由提取的锰与生物成因草酸盐沉淀形成的。Mn(II,III) -氧化物最容易受到真菌生物劣化的影响,氧化物中高达 26%的锰含量被真菌提取到培养基中。还讨论了培养基中生物成因草酸盐和葡萄糖酸盐积累的检测变异性与真菌对锰的敏感性之间的关系。这些表明了通过还原溶解实现锰氧化物生物劣化的另一种途径。在那里,草酸盐代谢产物作为还原剂被消耗。我们的结果突出了真菌活性在锰的迁移和转化中的重要性。土壤真菌应被视为影响天然地球化学屏障稳定性的重要地球活性因子。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6467/8540447/ba18e9cb2caa/jof-07-00808-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验