Physics, University of California, Merced, Merced, 95343, USA.
Materials Science and Engineering, University of California, Merced, Merced, 95343, USA.
Adv Sci (Weinh). 2021 Dec;8(23):e2102077. doi: 10.1002/advs.202102077. Epub 2021 Oct 23.
The authors reveal a thermal actuating bilayer that undergoes reversible deformation in response to low-energy thermal stimuli, for example, a few degrees of temperature increase. It is made of an aligned carbon nanotube (CNT) sheet covalently connected to a polymer layer in which dibenzocycloocta-1,5-diene (DBCOD) actuating units are oriented parallel to CNTs. Upon exposure to low-energy thermal stimulation, coordinated submolecular-level conformational changes of DBCODs result in macroscopic thermal contraction. This unique thermal contraction offers distinct advantages. It's inherently fast, repeatable, low-energy driven, and medium independent. The covalent interface and reversible nature of the conformational change bestow this bilayer with excellent repeatability, up to at least 70 000 cycles. Unlike conventional CNT bilayer systems, this system can achieve high precision actuation readily and can be scaled down to nanoscale. A new platform made of poly(vinylidene fluoride) (PVDF) in tandem with the bilayer can harvest low-grade thermal energy and convert it into electricity. The platform produces 86 times greater energy than PVDF alone upon exposure to 6 °C thermal fluctuations above room temperature. This platform provides a pathway to low-grade thermal energy harvesting. It also enables low-energy driven thermal artificial robotics, ultrasensitive thermal sensors, and remote controlled near infrared (NIR) driven actuators.
作者揭示了一种热致动双层结构,它可以对低能量热刺激(例如几度的温度升高)做出可逆变形。它由共价连接到聚合物层的取向碳纳米管 (CNT) 片组成,其中二苯并环辛-1,5-二烯 (DBCOD) 致动单元与 CNTs 平行取向。在暴露于低能量热刺激下时,DBCODs 的协调亚分子级构象变化导致宏观热收缩。这种独特的热收缩提供了明显的优势。它本质上速度快、可重复、能量低且对介质不依赖。共价界面和构象变化的可逆性使这种双层结构具有出色的可重复性,至少可达 70,000 次循环。与传统的 CNT 双层系统不同,该系统可以轻松实现高精度致动,并且可以缩小到纳米级。由聚偏二氟乙烯 (PVDF) 与双层结构串联而成的新平台可以收集低品位热能并将其转化为电能。该平台在暴露于室温以上 6°C 的热波动时产生的能量比单独的 PVDF 高出 86 倍。该平台为低品位热能收集提供了途径。它还能够实现低能量驱动的热人工机器人、超灵敏热传感器和远程控制的近红外 (NIR) 驱动执行器。