School of Environmental and Material Engineering, Yantai University, 30# Qingquan Road, Yantai, 264005, PR China.
School of Environmental and Material Engineering, Yantai University, 30# Qingquan Road, Yantai, 264005, PR China.
Chem Biol Interact. 2022 Jan 5;351:109716. doi: 10.1016/j.cbi.2021.109716. Epub 2021 Oct 22.
Doping quantum dots (QDs) with extra element presents a promising future for their applications in the fields of environmental monitoring, commercial products and biomedical sciences. However, it remains unknown for the influence of doping on the molecular biocompatibility of QDs and the underlying mechanisms of the interaction between doped-QDs and protein molecules. Using the "one-pot" method, we synthesized N-acetyl-l-cysteine capped CdTe: Zn QDs with higher fluorescence quantum yield, improved stability and better molecular biocompatibility compared with undoped CdTe QDs. Using digestive enzyme trypsin (TRY) as the protein model, the interactions of undoped QDs and Zn-doped QDs with TRY as well as the underlying mechanisms were investigated using multi-spectroscopy, isothermal titration calorimetry and dialysis techniques. Van der Waals forces and hydrogen bonds are the major driving forces in the interaction of both QDs with TRY, which leading to the loosening of protein skeleton and tertiary structural changes. Compared with undoped QDs, Zn-doped QDs bind less amount of TRY with a higher affinity and then release higher amount of Cd. Zn-doped QDs have a less stimulating impact on TRY activity by decreasing TRY binding and reducing Cd binding to TRY. Taken all together, Zn-doped QDs offer a safer alternative for the applications of QDs by reducing unwanted interactions with proteins and improving biocompatibility at the molecular level.
用额外的元素掺杂量子点(QDs)为它们在环境监测、商业产品和生物医学科学领域的应用提供了广阔的前景。然而,掺杂对 QDs 的分子生物相容性的影响以及掺杂-QDs 与蛋白质分子之间相互作用的潜在机制仍不清楚。我们使用“一锅法”合成了 N-乙酰-l-半胱氨酸(NAC)包覆的 CdTe:Zn QDs,与未掺杂的 CdTe QDs 相比,其荧光量子产率更高、稳定性更好、分子生物相容性更好。使用消化酶胰蛋白酶(TRY)作为蛋白质模型,通过多光谱、等温热力学滴定和透析技术研究了未掺杂 QDs 和 Zn 掺杂 QDs 与 TRY 的相互作用及其潜在机制。范德华力和氢键是 QDs 与 TRY 相互作用的主要驱动力,导致蛋白质骨架的松动和三级结构的变化。与未掺杂 QDs 相比,Zn 掺杂 QDs 与 TRY 的结合量较少,亲和力较高,然后释放出更多的 Cd。Zn 掺杂 QDs 通过减少与 TRY 的结合以及减少 Cd 与 TRY 的结合,对 TRY 活性的刺激作用较小。总的来说,Zn 掺杂 QDs 通过减少与蛋白质的不必要相互作用并提高分子水平的生物相容性,为 QDs 的应用提供了更安全的选择。