Suppr超能文献

利用泊松回归分析和 XGBoost 开发小儿急性中耳炎发病率预测模型。

Development of prediction models for the incidence of pediatric acute otitis media using Poisson regression analysis and XGBoost.

机构信息

Department of Otorhinolaryngology-Head and Neck Surgery, Chung-Ang University College of Medicine, 84 Heukseok-ro, Dongjak-gu, 06974, Seoul, South Korea.

出版信息

Environ Sci Pollut Res Int. 2022 Mar;29(13):18629-18640. doi: 10.1007/s11356-021-17135-9. Epub 2021 Oct 25.

Abstract

Otitis media has profound health and economic impact, and its occurrence is known to be influenced by air pollution and climate. The purpose of this study was to develop prediction models using climate and air pollution indicators for the occurrence of acute otitis media (AOM). The study was conducted from January 1, 2014, to December 31, 2019, and included pediatric patients (age < 12 years) diagnosed on their emergency room visit in our tertiary medical institution. We obtained data on the weekly number of AOM patients and the weekly average values of air pollution and climate indicators. Poisson regression analysis and eXtreme Gradient Boosting (XGBoost) were used to develop prediction models for the overall pediatric patients and for the patients classified according to sex (male and female) and age (< 2 years and ≥ 2 years). For the overall population, the correlation coefficients between the original and estimated data in the testing set were 0.441 (p < 0.001) and 0.844 (p < 0.001) for the models developed using Poisson regression analysis and XGBoost, respectively. The root-mean-square errors in the testing set were 3.094 and 1.856, respectively. For patients classified according to sex and age, the prediction models developed using XGBoost showed better performance than the models developed using Poisson regression analysis. In conclusion, this study successfully developed prediction models with air pollution and climate indicators for the incidence of pediatric AOM, using XGBoost. This model can be further developed to prevent pediatric AOM.

摘要

中耳炎对健康和经济有深远影响,其发生被认为受到空气污染和气候的影响。本研究旨在利用气候和空气污染指标开发预测急性中耳炎(AOM)发生的模型。该研究于 2014 年 1 月 1 日至 2019 年 12 月 31 日进行,纳入了在我们的三级医疗机构急诊就诊的儿科患者(年龄<12 岁)。我们获得了每周 AOM 患者人数和每周空气污染及气候指标平均值的数据。使用泊松回归分析和极端梯度提升(XGBoost)为所有儿科患者以及按性别(男性和女性)和年龄(<2 岁和≥2 岁)分类的患者开发预测模型。对于总体人群,在测试集中原始数据和估计数据之间的相关系数分别为使用泊松回归分析和 XGBoost 开发的模型的 0.441(p<0.001)和 0.844(p<0.001)。测试集中的均方根误差分别为 3.094 和 1.856。对于按性别和年龄分类的患者,使用 XGBoost 开发的预测模型的性能优于使用泊松回归分析开发的模型。总之,本研究使用 XGBoost 成功地为儿科 AOM 的发生开发了空气污染和气候指标预测模型。该模型可以进一步开发,以预防儿科 AOM。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验