Brandyk Andrzej, Szeląg Bartosz, Kiczko Adam, Krukowski Marcin, Kozioł Adam, Piotrowski Jerzy, Majewski Grzegorz
Water Centre, Warsaw University of Life Sciences, 02-676 Warsaw, Poland.
Department of Geotechnics, Geomatics and Waste Management, Kielce University of Technology, 25-314 Kielce, Poland.
Sensors (Basel). 2021 Oct 14;21(20):6819. doi: 10.3390/s21206819.
Soil moisture content simulation models have continuously been an important research objective. In particular, the comparisons of the performance of different model types deserve proper attention. Therefore, the quality of selected physically-based and statistical models was analyzed utilizing the data from the Time Domain Reflectometry technique. An E-Test measurement system was applied with the reflectogram interpreted into soil volumetric moisture content by proper calibration equations. The gathered data facilitated to calibrate the physical model of Deardorff and establish parameters of: support vector machines, multivariate adaptive regression spline, and boosted trees model. The general likelihood uncertainty estimation revealed the sensitivity of individual model parameters. As it was assumed, a simple structure of statistical models was achieved but no direct physical interpretation of their parameters, contrary to a physically-based method. The TDR technique proved useful for the calibration of different soil moisture models and a satisfactory quality for their future exploitation.
土壤水分含量模拟模型一直是重要的研究目标。特别是,不同模型类型的性能比较值得适当关注。因此,利用时域反射技术的数据对选定的物理模型和统计模型的质量进行了分析。应用了E测试测量系统,并通过适当的校准方程将反射图解释为土壤体积含水量。收集的数据有助于校准迪尔多夫物理模型,并确定支持向量机、多元自适应回归样条和增强树模型的参数。广义似然不确定性估计揭示了各个模型参数的敏感性。正如所假设的那样,实现了统计模型的简单结构,但与基于物理的方法相反,其参数没有直接的物理解释。时域反射技术被证明对校准不同的土壤水分模型很有用,并且其质量足以满足未来的应用需求。