Suppr超能文献

基于字符特征的视觉显著性特性用于显著性图模型重建

Characteristics of Visual Saliency Caused by Character Feature for Reconstruction of Saliency Map Model.

作者信息

Takano Hironobu, Nagashima Taira, Nakamura Kiyomi

机构信息

Graduate School of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan.

出版信息

Vision (Basel). 2021 Oct 19;5(4):49. doi: 10.3390/vision5040049.

Abstract

Visual saliency maps have been developed to estimate the bottom-up visual attention of humans. A conventional saliency map represents a bottom-up visual attention using image features such as the intensity, orientation, and color. However, it is difficult to estimate the visual attention using a conventional saliency map in the case of a top-down visual attention. In this study, we investigate the visual saliency for characters by applying still images including both characters and symbols. The experimental results indicate that characters have specific visual saliency independent of the type of language.

摘要

视觉显著性图已被开发出来用于估计人类的自下而上视觉注意力。传统的显著性图使用诸如强度、方向和颜色等图像特征来表示自下而上的视觉注意力。然而,在自上而下视觉注意力的情况下,使用传统显著性图来估计视觉注意力是困难的。在本研究中,我们通过应用包含字符和符号的静止图像来研究字符的视觉显著性。实验结果表明,字符具有独立于语言类型的特定视觉显著性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5235/8544726/61b5a7aa803d/vision-05-00049-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验