Hartley Zane K J, Jackson Aaron S, Pound Michael, French Andrew P
School of Computer Science, University of Nottingham, NG7 1BB, UK.
School of Biosciences, University of Nottingham, LE12 5RD, UK.
Plant Phenomics. 2021 Oct 8;2021:9874597. doi: 10.34133/2021/9874597. eCollection 2021.
3D reconstruction of fruit is important as a key component of fruit grading and an important part of many size estimation pipelines. Like many computer vision challenges, the 3D reconstruction task suffers from a lack of readily available training data in most domains, with methods typically depending on large datasets of high-quality image-model pairs. In this paper, we propose an unsupervised domain-adaptation approach to 3D reconstruction where labelled images exist in our source synthetic domain, and training is supplemented with different datasets from the target real domain. We approach the problem of 3D reconstruction using volumetric regression and produce a training set of 25,000 pairs of images and volumes using hand-crafted 3D models of bananas rendered in a 3D modelling environment (Blender). Each image is then enhanced by a GAN to more closely match the domain of photographs of real images by introducing a volumetric consistency loss, improving performance of 3D reconstruction on real images. Our solution harnesses the cost benefits of synthetic data while still maintaining good performance on real world images. We focus this work on the task of 3D banana reconstruction from a single image, representing a common task in plant phenotyping, but this approach is general and may be adapted to any 3D reconstruction task including other plant species and organs.
水果的三维重建作为水果分级的关键组成部分以及许多尺寸估计流程的重要环节,具有重要意义。与许多计算机视觉挑战一样,三维重建任务在大多数领域都面临着缺乏现成训练数据的问题,其方法通常依赖于高质量图像 - 模型对的大型数据集。在本文中,我们提出了一种用于三维重建的无监督域适应方法,其中在源合成域中存在标记图像,并使用来自目标真实域的不同数据集来补充训练。我们使用体积回归来解决三维重建问题,并使用在三维建模环境(Blender)中渲染的香蕉手工三维模型生成了一个包含25,000对图像和体积的训练集。然后,通过引入体积一致性损失,利用生成对抗网络(GAN)对每个图像进行增强,使其更接近真实图像照片的域,从而提高在真实图像上的三维重建性能。我们的解决方案利用了合成数据的成本优势,同时在真实世界图像上仍保持良好性能。我们将这项工作重点放在从单张图像进行香蕉三维重建的任务上,这代表了植物表型分析中的一个常见任务,但这种方法具有通用性,可适用于任何三维重建任务,包括其他植物物种和器官。