Dorn Britta, de Haan Ronald, Schlotter Ildikó
University of Tübingen, Tübingen, Germany.
ILLC, University of Amsterdam, Amsterdam, the Netherlands.
Algorithmica. 2021;83(5):1559-1603. doi: 10.1007/s00453-020-00794-4. Epub 2021 Mar 26.
We consider the following control problem on fair allocation of indivisible goods. Given a set of items and a set of agents, each having strict linear preferences over the items, we ask for a minimum subset of the items whose deletion guarantees the existence of a proportional allocation in the remaining instance; we call this problem Proportionality by Item Deletion (PID). Our main result is a polynomial-time algorithm that solves PID for three agents. By contrast, we prove that PID is computationally intractable when the number of agents is unbounded, even if the number of item deletions allowed is small-we show that the problem is -hard with respect to the parameter . Additionally, we provide some tight lower and upper bounds on the complexity of PID when regarded as a function of || and . Considering the possibilities for approximation, we prove a strong inapproximability result for PID. Finally, we also study a variant of the problem where we are given an allocation in advance as part of the input, and our aim is to delete a minimum number of items such that is proportional in the remainder; this variant turns out to be -hard for six agents, but polynomial-time solvable for two agents, and we show that it is -hard when parameterized by the number of.
我们考虑关于不可分割物品公平分配的如下控制问题。给定一组物品和一组代理人,每个代理人对物品都有严格的线性偏好,我们寻求物品的一个最小子集,其删除能保证在剩余实例中存在比例分配;我们将此问题称为按物品删除实现比例性(PID)。我们的主要结果是一个多项式时间算法,它能解决三个代理人的PID问题。相比之下,我们证明当代理人数量无界时,即使允许删除的物品数量很少,PID在计算上也是难以处理的——我们表明该问题关于参数是W[1] - 难的。此外,当将PID的复杂度视为物品数量||和代理人数量的函数时,我们给出了一些紧密的下界和上界。考虑近似的可能性,我们证明了PID的一个强不可近似性结果。最后,我们还研究了该问题的一个变体,其中我们预先给定一个分配作为输入的一部分,我们的目标是删除最少数量的物品,使得在剩余部分中该分配是比例性的;这个变体对于六个代理人来说是W[1] - 难的,但对于两个代理人是多项式时间可解的,并且我们表明当按物品数量进行参数化时它是W[1] - 难的。