Suppr超能文献

地形线索通过不同的细胞机械感知途径指导细胞极化。

Topographic Cues Guiding Cell Polarization via Distinct Cellular Mechanosensing Pathways.

机构信息

State Key Laboratory of Polymer Materials and Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China.

State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.

出版信息

Small. 2022 Jan;18(2):e2104328. doi: 10.1002/smll.202104328. Epub 2021 Nov 5.

Abstract

Cell polarization exists in a variety of tissues to regulate cell behaviors and functions. Space constraint (spatially limiting cell extension) and adhesion induction (guiding adhesome growth) are two main ways to induce cell polarization according to the microenvironment topographies. However, the mechanism of cell polarization induced by these two ways and the downstream effects on cell functions are yet to be understood. Here, space constraint and adhesion induction guiding cell polarization are achieved by substrate groove arrays in micro and nano size, respectively. Although the morphology of polarized cells is similar on both structures, the signaling pathways to induce the cell polarization and the downstream functions are distinctly different. The adhesion induction (nano-groove) leads to the formation of focal adhesions and activates the RhoA/ROCK pathway to enhance the myosin-based intracellular force, while the space constraint (micro-groove) only activates the formation of pseudopodia. The enhanced intracellular force caused by adhesion induction inhibits the chromatin condensation, which promotes the osteogenic differentiation of stem cells. This study presents an overview of cell polarization and mechanosensing at biointerface to aid in the design of novel biomaterials.

摘要

细胞极化存在于各种组织中,以调节细胞行为和功能。根据微环境形貌,空间限制(空间限制细胞延伸)和粘附诱导(引导粘着斑生长)是诱导细胞极化的两种主要方式。然而,这两种方式诱导细胞极化的机制以及对细胞功能的下游影响尚不清楚。在这里,通过微纳尺寸的基底槽阵列分别实现空间限制和粘附诱导引导细胞极化。尽管两种结构上极化细胞的形态相似,但诱导细胞极化的信号通路和下游功能明显不同。粘附诱导(纳米槽)导致粘着斑的形成并激活 RhoA/ROCK 通路以增强基于肌球蛋白的细胞内力,而空间限制(微槽)仅激活伪足的形成。粘附诱导引起的增强的细胞内力抑制染色质凝聚,从而促进干细胞的成骨分化。本研究概述了生物界面处的细胞极化和机械感知,以帮助设计新型生物材料。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验