Suppr超能文献

调控混合多氧化态纳米线的氧空位以提高锂空气电池性能。

Tuning the oxygen vacancy of mixed multiple oxidation states nanowires for improving Li-air battery performance.

作者信息

Yuan Mengwei, Sun Zemin, Wu Zhenglong, Wang Di, Yang Han, Nan Caiyun, Li Huifeng, Zhang Wenkai, Sun Genban

机构信息

Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China; Department of Physics and Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing 100875, China.

Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China.

出版信息

J Colloid Interface Sci. 2022 Feb 15;608(Pt 2):1384-1392. doi: 10.1016/j.jcis.2021.10.104. Epub 2021 Oct 23.

Abstract

Mixed multiple oxidation states CoMoO nanowires (electrocatalysts) with tunable intrinsic oxygen vacancies were fabricated. CoMoO with proper oxygen vacancy can be employed to construct a Li-air battery with a high capacity and stable cyclability. This is possible because CoMoO contains surface oxygen vacancies, which result in the unit of CoMo bond, that is important for electrocatalysts used in Li-air batteries. Both the experimental and theoretical results demonstrate that the surface oxygen vacancies containing CoMoO nanowires have a higher electrocatalytic activity. This shows that the highly efficient electrocatalysts used for Li-air batteries were designed to modify the redox properties of the mixed metal oxide in the catalytic active sites. This successful material design led to an improved strategy for high oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) activities based on the fast formation and extinction of ORR products.

摘要

制备了具有可调固有氧空位的混合多氧化态CoMoO纳米线(电催化剂)。具有适当氧空位的CoMoO可用于构建具有高容量和稳定循环性能的锂空气电池。这是可行的,因为CoMoO含有表面氧空位,这导致了CoMo键单元的形成,这对于锂空气电池中使用的电催化剂很重要。实验和理论结果均表明,含有表面氧空位的CoMoO纳米线具有更高的电催化活性。这表明,用于锂空气电池的高效电催化剂旨在改变催化活性位点中混合金属氧化物的氧化还原性质。这种成功的材料设计基于氧还原反应(ORR)产物的快速形成和消失,为提高氧还原反应(ORR)和析氧反应(OER)活性带来了一种改进策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验